The aim of this study was to evaluate the efficacy, optimal dose, and optimal time-window of gacyclidine, a novel N-methyl-D-aspartate (NMDA) receptor antagonist, in terms of its functional, histopathological, and electrophysiological effects after experimental spinal cord injury. The spinal cord of rats was damaged by a photochemical method and the animals were treated by saline or gacyclidine at doses of 1, 2.5, or 5 mg/kg 10 min after injury or gacyclidine 1 mg/kg 10, 30, 60, and 120 min after injury. The time-course of the motor score (walking and inclined-plane stability) was evaluated until day 18, and somatosensory evoked potentials were determined on day 18. The animals were then sacrificed, and the cross-sectional area of the spinal cord (at the epicenter of the injury, above and below the injury) was measured. Walking recovery was better in most of the groups treated after injury than in the untreated injured animals. Motor performances were related to preservation of a larger undamaged area of spinal cord at the level of the injury and, interestingly, with prevention of extension of the anatomical lesion above the level of the injury. Somatosensory evoked potential amplitudes were often higher in treated groups. These results confirm that gacyclidine induces dose-dependent and time-dependent attenuation of spinal cord damage after an experimental vascular lesion. Although all three doses induced neuroprotective effects, recovery was greater and very homogeneous in the group treated with 1 mg/kg. Moreover, recovery was slightly better and more homogeneous within the groups treated 10 and 30 min after injury compared to the other groups. It appears that, according to the existing evidence, NMDA antagonists are an essential component in the elaboration of a neuroprotective strategy after spinal cord trauma.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2000.17.19DOI Listing

Publication Analysis

Top Keywords

spinal cord
28
min injury
12
injury
9
neuroprotective effects
8
somatosensory evoked
8
area spinal
8
recovery better
8
groups treated
8
level injury
8
spinal
7

Similar Publications

Comprehensive Analysis Reveals the Potential Diagnostic Value of Biomarkers Associated With Aging and Circadian Rhythm in Knee Osteoarthritis.

Orthop Surg

January 2025

Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.

Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.

View Article and Find Full Text PDF

Holocord syringomyelia in 18 dogs.

Front Vet Sci

January 2025

Pride Veterinary Referrals, IVC Evidensia Group, Derby, United Kingdom.

Holocord syringomyelia (HSM) is characterized by a continuous spinal cord cavitation along its entire length and is currently poorly documented in dogs. This retrospective multicentric case series investigates the clinical and MRI findings in 18 dogs with HSM. The median age at presentation was 82 months (range 9-108 months) and French Bulldogs were overrepresented (50%).

View Article and Find Full Text PDF

Background: Patients with cervical spinal cord injuries (CSCIs) have a high incidence of respiratory complications. The effectiveness of non-invasive positive pressure ventilation (NPPV) in preventing respiratory complications such as pneumonia in acute CSCIs remains unclear. We evaluated whether intermittent NPPV (iNPPV) could prevent pneumonia in patients with acute CSCIs.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune disease of the brain and spinal cord with both inflammatory and neurodegenerative features. Although advances in imaging techniques, particularly magnetic resonance imaging (MRI), have improved the process of diagnosis, its cause is unknown, a cure remains elusive and the evidence base to guide treatment is lacking. Computational techniques like machine learning (ML) have started to be used to understand MS.

View Article and Find Full Text PDF

Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!