We previously reported that i.v. DAMGO (Tyr-D-Ala-Gly-NMePhe-Gly-ol), a selective mu-opioid agonist, causes an increase in blood pressure with no change in heart rate in unanesthetized sheep and subsequently demonstrated that DAMGO attenuates baroreflex-mediated bradycardia. To determine the site and mechanism by which mu-agonists inhibit baroreflex sensitivity, we have carried out further investigations by using DAMGO and another mu-agonist, DALDA (Tyr-D-Arg-Phe-Lys-NH2). The bradycardic response to norepinephrine (NE) was significantly blunted after i.v. DAMGO or DALDA in both nonpregnant and pregnant sheep. In contrast, the tachycardic response to sodium nitroprusside (SNP) remained unchanged in the presence of DAMGO or DALDA. In view of the highly restricted distribution of DALDA across the blood-brain barrier (BBB), we hypothesized that the blunting of reflex-mediated bradycardia by mu-opioid agonists can occur peripherally. Pretreatment with the quaternary opioid antagonist, naloxone methiodide (NM), completely blocked the attenuation of baroreflex sensitivity by DAMGO and DALDA in both nonpregnant and pregnant animals. These data suggest that in addition to central mechanisms, mu-opioid agonists can inhibit baroreflex sensitivity at a peripheral site, most likely by inhibiting vagal influence on heart-rate control rather than by acting directly at baroreceptors.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00005344-200002000-00014DOI Listing

Publication Analysis

Top Keywords

mu-opioid agonists
12
baroreflex sensitivity
12
damgo dalda
12
peripheral site
8
inhibit baroreflex
8
dalda nonpregnant
8
nonpregnant pregnant
8
damgo
6
dalda
5
site action
4

Similar Publications

Buprenorphine is an agonist at the mu opioid receptor (MOR) and antagonist at the kappa (KOR) and delta (DOR) receptors and a nociceptin receptor (NOR) ligand. Buprenorphine has a relatively low intrinsic efficacy for G-proteins and a long brain and MOR dwell time. Buprenorphine ceiling on respiratory depression has theoretically been related multiple factors such as low intrinsic efficacy at MOR, binding to six-transmembrane MOR and interactions in MOR/NOR heterodimers.

View Article and Find Full Text PDF

Fentanyl is a potent synthetic opioid widely used perioperatively and illicitly as a drug of abuse . It is well established that fentanyl acts as a μ-opioid receptor agonist, signaling through Gα intracellular pathways to inhibit electrical excitability, resulting in analgesia and respiratory depression . However, fentanyl uniquely also triggers muscle rigidity, including respiratory muscles, hindering the ability to execute central respiratory commands or to receive external resuscitation.

View Article and Find Full Text PDF

Background: Patients with obstructive sleep apnoea (OSA) are considered more sensitive to opioids and at increased risk of opioid-induced respiratory depression. Nonetheless, whether OSA treatment (continuous positive airway pressure, CPAP; or bilevel positive airway pressure, BIPAP) modifies this risk remains unknown. Greater opioid sensitivity can arise from altered pharmacokinetics or pharmacodynamics.

View Article and Find Full Text PDF

Chronic pain is a debilitating disease and remains challenging to treat. Morphine serves as the most commonly used drug for the treatment of pathological pain. However, detrimental side effects (e.

View Article and Find Full Text PDF

The opioid crisis continues to escalate, disproportionately affecting women of reproductive age. Traditionally the first line of treatment for pregnant women with opioid use disorder is the mu-opioid receptor agonist methadone. However, in recent years, the use of buprenorphine as a replacement therapy has increased as it has fewer side-effects and longer duration of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!