Cytochrome cM from synechocystis 6803. Detection in cells, expression in Escherichia coli, purification and physical characterization.

Eur J Biochem

Department of Plant Biology, Photosynthesis Research Unit, USDA/ARS, University of Illinois, Urbana, USA.

Published: February 2000

Based on DNA sequence data a novel c-type cytochrome, cytochrome cM, has been predicted to exist in the cyanobacterium Synechocystis 6803. The precursor protein consists of 105 amino acids with a characteristic heme-binding motif and a hydrophobic domain located at the N-terminal end that is proposed to act as either a signal peptide or a membrane anchor. For the first time we report the detection of cytochrome cM in Synechocystis 6803 using Western blot analysis. The soluble portion cytochrome cM has been overexpressed in Escherichia coli in two forms, one with a poly histidine tag to facilitate purification and one without such a tag. The overexpressed protein has been purified and shown to bind heme, exhibiting an absorption peak in the Soret band near 416 nm and a peak in the alpha band at 550 nm. The extinction coefficient of cytochrome cM is 23.2 +/- 0.5 mM-1.cm-1 for the reduced minus oxidized alpha band peak (550-535 nm). The isoelectric point of cytochrome cM is 5.6 (without the histidine tag), which is significantly lower than the pI of 7.2 predicted from the amino acid sequence. The redox midpoint potential of cytochrome cM expressed in E. coli is 151 +/- 5 mV (pH 7.1), which is quite low compared to other c-type cytochromes in which a histidine and a methionine residue serve as the axial ligands to the heme. This work opens the way for determining the three-dimensional structure of cytochrome cM and investigating its function in cyanobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1327.2000.01092.xDOI Listing

Publication Analysis

Top Keywords

synechocystis 6803
12
cytochrome
9
cytochrome synechocystis
8
escherichia coli
8
histidine tag
8
alpha band
8
6803 detection
4
detection cells
4
cells expression
4
expression escherichia
4

Similar Publications

Acetate is a biological anion with many applications in the chemical and food industries. In addition to being a common microbial fermentative end-product, acetate can be produced by photosynthetic cyanobacteria from CO using solar energy. Using wild-type cells of the unicellular model cyanobacterium Synechocystis PCC 6803 only low levels of acetate are observed outside the cells.

View Article and Find Full Text PDF

Cyanobacterial cytochrome c6 (Cyt c6) is crucial for electron transfer between the cytochrome b6f complex and photosystem I (PSI), playing a key role in photosynthesis and enhancing adaptation to extreme environments. This study investigates the high-resolution crystal structures of Cyt c6 from PCC 7942 and PCC 6803, focusing on its dimerization mechanisms and functional implications for photosynthesis. Cyt c6 was expressed in using a dual-plasmid co-expression system and characterized in both oxidized and reduced states.

View Article and Find Full Text PDF

Formate is an important solar fuel, with large application potential in bioconversion. Especially, the win-win collaboration is achieved when formate is applied to the cultivation of microalgae, which combines the advantages from both artificial and natural photosynthesis. However, the inhibition of formate on the photosynthetic electron transport hinders the application of formate at high concentrations.

View Article and Find Full Text PDF

Light-driven biotransformations in recombinant cyanobacteria benefit from the atom-efficient regeneration of reaction equivalents like NADPH from water and light by oxygenic photosynthesis. The self-shading of photosynthetic cells throughout the reaction volume, along with the need for extended light paths, limits adequate light supply and significantly restricts the potential for upscaling. Here, we present a flat panel photobioreactor (1 cm optical path length) as a scalable system to provide efficient illumination at high cell densities.

View Article and Find Full Text PDF

Background: Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!