Catalytic sites for 3' and 5' incision of Escherichia coli nucleotide excision repair are both located in UvrC.

J Biol Chem

Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands.

Published: February 2000

Nucleotide excision repair in Escherichia coli is a multistep process in which DNA damage is removed by incision of the DNA on both sides of the damage, followed by removal of the oligonucleotide containing the lesion. The two incision reactions take place in a complex of damaged DNA with UvrB and UvrC. It has been shown (Lin, J. -J., and Sancar, A. (1992) J. Biol. Chem. 267, 17688-17692) that the catalytic site for incision on the 5' side of the damage is located in the UvrC protein. Here we show that the catalytic site for incision on the 3' side is in this protein as well, because substitution R42A abolishes 3' incision, whereas formation of the UvrBC-DNA complex and the 5' incision reaction are unaffected. Arg(42) is part of a region that is homologous to the catalytic domain of the homing endonuclease I-TevI. We propose that the UvrC protein consists of two functional parts, with the N-terminal half for the 3' incision reaction and the C-terminal half containing all the determinants for the 5' incision reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.275.7.5120DOI Listing

Publication Analysis

Top Keywords

incision reaction
12
incision
9
escherichia coli
8
nucleotide excision
8
excision repair
8
located uvrc
8
catalytic site
8
site incision
8
incision side
8
uvrc protein
8

Similar Publications

Iodoform, a halogenated organic compound, has been a cornerstone in surgical practice due to its potent antiseptic and antimicrobial properties. This comprehensive review examines the historical evolution, mechanism of action, clinical applications, and safety profile of iodoform across various surgical disciplines. Historically significant formulations like Whitehead's varnish and bismuth iodoform paraffin paste (BIPP) demonstrated remarkable efficacy in wound healing during the late 19th and early 20th centuries.

View Article and Find Full Text PDF

Objective: The aim of this study was to comprehensively investigate the clinical efficacy of intraoperative local joint injection and intramuscular injection of betamethasone in patients with severe traumatic knee osteoarthritis (KOA).

Methods: 80 patients with severe traumatic KOA undergoing total knee arthroplasty were retrospectively recruited and rolled into S1 group (intra-articular injection of ropivacaine + betamethasone and isotonic saline mixture at joint incision), S2 group (muscle local injection of betamethasone before incision closure, simultaneously intra-articular injection of ropivacaine + isotonic saline mixture at joint incision), and D group (intra-articular injection of ropivacaine + isotonic saline mixture at the joint incision). Visual analog scale (VAS) score, serum inflammatory factors (IFs), hospital for special surgery (HSS)score, Pittsburgh sleep quality index (PSQI), and adverse reaction events (AREs) were analyzed.

View Article and Find Full Text PDF

Introduction BioGlue® (CryoLife, Inc, Kennesaw, GA), despite being claimed to be a safe and harmless sealant, reportedly has several adverse effects including surgical wound dehiscence. This study aimed to examine the factors that may contribute to this unfavorable outcome in cranial surgery. Methods A retrospective cross-sectional analysis was conducted on patients who underwent brain surgery with the use of BioGlue® between January 2015 and December 2022.

View Article and Find Full Text PDF

Objective: To compare the 3-year outcomes of the modified minimally invasive Ponto surgery (m-MIPS) to both the original MIPS (o-MIPS) and linear incision technique with soft tissue preservation (LIT-TP) for inserting bone-anchored hearing implants (BAHIs).

Study Design: Prospective study with three patient groups: m-MIPS, o-MIPS, and LIT-TP.

Setting: Tertiary referral center.

View Article and Find Full Text PDF

Structure-switchable branched inhibitors regulate the activity of CRISPR-Cas12a for nucleic acid diagnostics.

Anal Chim Acta

January 2025

Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, People's Republic of China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, People's Republic of China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, People's Republic of China. Electronic address:

Background: In current years, the CRISPR (clustered regularly interspaced short palindromic repeats) based strategies have emerged as the most promising molecular tool in the field of gene editing, intracellular imaging, transcriptional regulation and biosensing. However, the recent CRISPR-based diagnostic technologies still require the incorporation of other amplification strategies (such as polymerase chain reaction) to improve the cis/trans cleavage activity of Cas12a, which complicates the detection workflow and lack of a uniform compatible system to respond to the target in one pot.

Results: To better fully-functioning CRISPR/Cas12a, we reported a novel technique for straightforward nucleic acid detection by incorporating enzyme-responsive steric hindrance-based branched inhibitors with CRISPR/AsCas12a methodology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!