AI Article Synopsis

Article Abstract

In most nonexcitable cells, calcium (Ca(2+)) release from inositol 1,4,5-trisphosphate (InsP(3))-sensitive intracellular Ca(2+) stores is coupled to Ca(2+) influx (calcium release-activated channels (I(CRAC))) pathway. Despite intense investigation, the molecular identity of I(CRAC) and the mechanism of its activation remain poorly understood. InsP(3)-dependent miniature calcium channels (I(min)) display functional properties characteristic for I(CRAC). Here we used patch clamp recordings of I(min) channels in human carcinoma A431 cells to demonstrate that I(min) activity was greatly enchanced in the presence of anti-phosphatidylinositol 4, 5-bisphosphate antibody (PIP(2)Ab) and diminished in the presence of PIP(2). Anti-PIP(2) antibody induced a greater than 6-fold increase in I(min) sensitivity for InsP(3) activation and an almost 4-fold change in I(min) maximal open probability. The addition of exogenous PIP(2) vesicles to the cytosolic surface of inside-out patches inhibited I(min) activity. These results lead us to propose an existence of a Ca(2+) influx pathway in nonexcitable cells activated via direct conformational coupling with a selected population of InsP(3) receptors, located just underneath the plasma membrane and coupled to PIP(2). The described pathway provides for a highly compartmentalized Ca(2+) influx and intracellular Ca(2+) store refilling mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.275.7.4561DOI Listing

Publication Analysis

Top Keywords

ca2+ influx
12
plasma membrane
8
calcium channels
8
channels human
8
human carcinoma
8
carcinoma a431
8
a431 cells
8
inositol 145-trisphosphate
8
nonexcitable cells
8
intracellular ca2+
8

Similar Publications

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Intranasal Administration of the Combination of Dextro-Ketamine and Dexmedetomidine for Treatment of Diabetic Neuropathic Pain in Rats.

J Pain Res

January 2025

Programa de Pós-Graduação em Medicina (Cirurgia Geral), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Introduction: Diabetes mellitus (DM) has become a public health problem, which is associated with high morbidity and mortality, due to the chronic complications, such as diabetic neuropathy. Current recommendations for the treatment of neuropathic pain achieve a reduction of 30% in only 30% of cases. Therefore, it is necessary to identify new therapeutic approaches to improve the quality of life of diabetic patients.

View Article and Find Full Text PDF

Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca to establish and maintain a sharp cytosolic Ca gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth.

View Article and Find Full Text PDF

RIPK3 activation of CaMKII triggers mitochondrial apoptosis in NIBV-infected renal tubular epithelial cells.

Vet Microbiol

January 2025

Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

The purpose of this study was to investigate whether RIPK3-mediated programmed cell death can promote the replication and transmission of renal infectious bronchitis virus in renal tubular epithelial cells. Primary renal tubular epithelial cells were extracted from 1 to 7 day old Hy-Line Brown chicks, cultured in vitro by type I collagenase digestion, and infected with 1MOI SX9 strain. Cell samples were collected at 12 hpi, 24 hpi, 36 hpi and 48 hpi for experimental exploration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!