The ykzB and ykoL genes encode two peptides, of 51 and 60 amino acids, the functions of which are unknown. The ykzB and tnrA genes are contiguous and transcribed divergently. Expression of ykzB and ykoL is induced by glutamate and is under the control of the TnrA global regulator of nitrogen utilization. TnrA regulated its own synthesis in glutamate minimal medium. Two DNA sequences (TnrAB1 and TnrAB2) homologous to the TnrA binding site are present in the region between tnrA and ykzB. Deletion mapping indicated that the TnrAB2 binding site was involved in activation of the ykzB promoter. In addition, transcription of tnrA depends on the presence of the TnrAB1 binding site. The ykzB and ykoL genes are probably in the same transcriptional unit. A single promoter involved in transcription in the presence of glutamate was mapped by primer extension. ykoL expression was induced by phosphate limitation and depended on the PhoP-PhoR two-component regulatory system. Its promoter was mapped to the region between ykoL and ykzB. Four boxes similar to the PhoP binding site are present upstream from the ykoL promoter. These boxes are probably recognized by PhoP approximately P during the activation of transcription in phosphate limitation conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC94406PMC
http://dx.doi.org/10.1128/JB.182.5.1226-1231.2000DOI Listing

Publication Analysis

Top Keywords

binding site
16
ykzb ykol
12
control tnra
8
ykol genes
8
phosphate limitation
8
tnra
7
ykzb
7
ykol
6
expression operon
4
operon bacillus
4

Similar Publications

TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.

View Article and Find Full Text PDF

DARPin-induced reactivation of p53 in HPV-positive cells.

Nat Struct Mol Biol

January 2025

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.

Infection of cells with high-risk strains of the human papillomavirus (HPV) causes cancer in various types of epithelial tissue. HPV infections are responsible for ~4.5% of all cancers worldwide.

View Article and Find Full Text PDF

Sensitive and selective colorimetric detection of thiophanate-methyl based on a novel Ru-FeO nanozyme with enhanced peroxidase-like activity.

Mikrochim Acta

January 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.

A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.

View Article and Find Full Text PDF

Structural insights into isoform-specific RAS-PI3Kα interactions and the role of RAS in PI3Kα activation.

Nat Commun

January 2025

NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Mutations in RAS and PI3Kα are major drivers of human cancer. Their interaction plays a crucial role in activating PI3Kα and amplifying the PI3K-AKT-mTOR pathway. Disrupting RAS-PI3Kα interaction enhances survival in lung and skin cancer models and reduces tumor growth and angiogenesis, although the structural details of this interaction remain unclear.

View Article and Find Full Text PDF

Corticosteroid binding globulin (CBG; SERPINA6) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE; ELANE) significantly reduces CBG binding affinity, potentially increasing 'free' glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT; SERPINA1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!