Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Eyelid position and the electromyographic activity of the orbicularis oculi muscle were recorded unilaterally in rabbits during reflex and conditioned blinks. Air-puff-evoked blinks consisted of a fast downward phase followed sometimes by successive downward sags. The reopening phase had a much longer duration and slower peak velocity. Onset latency, maximum amplitude, peak velocity, and rise time of reflex blinks depended on the intensity and duration of the air puff-evoking stimulus. A flashlight focused on the eye also evoked reflex blinks, but not flashes of light, or tones. Both delayed and trace classical conditioning paradigms were used. For delayed conditioning, animals were presented with a 350-ms, 90-dB, 600-Hz tone, as conditioned stimulus (CS). For trace conditioning, animals were presented with a 10-ms, 1-k/cm(2) air puff, as CS. The unconditioned stimulus (US) consisted of a 100-ms, 3-k/cm(2) air puff. The stimulus interval between CS and US onsets was 250 ms. Conditioned responses (CRs) to tones were composed of downward sags that increased in number through the successive conditioning sessions. The onset latency of the CR decreased across conditioning at the same time as its maximum amplitude and its peak velocity increased, but the time-to-peak of the CR remained unaltered. The topography of CRs evoked by short, weak air puffs as the CS showed three different components: the alpha response to the CS, the CR, and the reflex response to the US. Through conditioning, CRs showed a decrease in onset latency, and an increase in maximum amplitude and peak velocity. The time-to-peak of the CR remained unchanged. A power spectrum analysis of reflex and conditioned blink acceleration profiles showed a significant approximately 8-Hz oscillation within a broadband of frequencies between 4 and 15 Hz. Nose and mandible movements presented power spectrum profiles different from those characterizing reflex and conditioned blinks. It is concluded that eyelid reflex responses in the rabbit present significant differences from CRs in their profiles and metric properties, suggesting different neural origins, but that a common approximately 8-Hz neural oscillator underlies lid motor performance. According to available data, the frequency of this putative oscillator seems to be related to the species size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.2000.83.2.836 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!