Transforming growth factor-alpha (TGF-alpha) contributes to the progression of mammary carcinogenesis in part through synergistic augmentation of estradiol (E2) action. To investigate this further, we sought to determine (1) whether the duration of TGF-alpha treatment might influence the nature of the TGF-alpha/E2 interaction, and (2) whether TGF-alpha would behave in a similar manner when combined with phytoestrogens. To this end, we transfected T47-D breast cancer cells with an estrogen-responsive reporter and then treated the cells (for 4-48 h) with varying concentrations of TGF-alpha, E2, the antiestrogen 4-hydroxy-tamoxifen (HOT), and/or one of three phytoestrogens. Our findings revealed that TGF-alpha has short-term synergistic and long-term inhibitory effects on E2- and phytoestrogen-regulated gene expression. Furthermore, this secondary inhibition of E2 action by TGF-alpha was similar in magnitude to that imposed by HOT. These findings demonstrate a novel role for TGF-alpha and invite reevaluation of current models regarding TGF-alphas interactions with E2 in breast cancer cells. Our results also raise the possibility that phytoestrogens, which interact with TGF-alpha in a manner conceptually identical to that of E2, may subserve a regulatory function in breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/ENDO:11:1:69 | DOI Listing |
Cancer Causes Control
December 2024
Department of Clinical Nutrition, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
Breast cancer is the leading cause of cancer-related death and the most common cancer among women worldwide. It is crucial to identify potentially modifiable risk factors to intervene and prevent breast cancer effectively. Sleep factors have emerged as a potentially novel risk factor for female breast cancer.
View Article and Find Full Text PDFDaru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
J Med Chem
December 2024
Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.
View Article and Find Full Text PDFACS Nano
December 2024
The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!