Although fibroblast growth factor-2 (FGF-2) plays an important role in cardioprotection and growth, little is known about the signals triggered by it in the adult heart. We therefore examined FGF-2-induced effects on phosphoinositide-specific phospholipase C (PI-PLC) isozymes, which produce second messengers linked to the inotropic and hypertrophic response of the myocardium. FGF-2, administered by retrograde perfusion to the isolated heart, induced an increase in inositol-1,4,5-trisphosphate levels in the cytosol, as well as an increase in total PI-PLC activity associated with sarcolemmal and cytosolic fractions. Furthermore FGF-2 induced a time-dependent elevation in cardiomyocyte membrane-associated PLC gamma1 and PLC beta1 activities, assayed in immunoprecipitated fractions, and moreover, increased the membrane levels of PLC beta1 and PLC beta3. Activation of PLC beta is suggestive of FGF-2-induced cross-talk between FGF-receptor tyrosine kinase and G-protein-coupled signaling in adult cardiomyocytes and underscores the importance of FGF-2 in cardiac physiology.
Download full-text PDF |
Source |
---|
J Transl Med
January 2025
Department of Gynecology, The Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050000, Hebei, China.
Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).
Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.
J Prosthodont
January 2025
Prosthodontist, Implant Dentistry Associates of Arlington, Arlington, Texas, USA.
Purpose: The purpose of this study was to analyze gingival fibroblast proliferation on additively manufactured polymethylmethacrylate (PMMA) groups with different surface characteristics namely no treatment group (NTG) and customized 250 µm diameter porosity (AM-250G) group.
Materials And Methods: 3D-printed NTG was compared for its influence on growth of cells to a additively manufactured surface with porosity (AM-250G). For each group (NTG, AM-250G) 20 samples of material were tested.
Stem Cell Res Ther
January 2025
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.
View Article and Find Full Text PDFNat Rev Drug Discov
January 2025
Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible.
View Article and Find Full Text PDFCytokine
January 2025
Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India. Electronic address:
Transforming growth factor-beta (TGF-β), displaying a dual role in immunosuppression and pathogenesis, has emerged as a key regulator of anti-leishmanial immune responses. In Leishmania infections, TGF-β drives immune deviation by enhancing regulatory T-cell (T-reg) differentiation and inhibiting macrophage activation, suppressing critical antiparasitic responses. This cytokine simultaneously promotes fibroblast proliferation, extracellular matrix production, and fibrosis in infected tissues, which aids in wound healing but impedes immune cell infiltration, particularly in visceral leishmaniasis, where splenic disorganization and compromised immune access are notable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!