Enhanced sensitivity to the chromosome-damaging effects of ionizing radiation is a feature of many cancer-predisposing conditions. It has been suggested that women with breast cancer are deficient in the repair of radiation-induced DNA damage. We have now investigated whether mutagen sensitivity is related to mutations in the breast cancer gene BRCA1. We studied the induction and repair of DNA damage in lymphocytes of women from families with familial breast cancer and breast and ovarian cancer. The mutagens used were gamma-irradiation and hydrogen peroxide and the DNA effects were determined with the micronucleus test and the comet assay. Women with a BRCA1 mutation (n = 12) and relatives without the familial mutation (n = 10) were compared to controls (i.e., healthy women without family history of breast or ovarian cancer; n = 17). Our results indicate a close relationship between the presence of a BRCA1 mutation and sensitivity for the induction of micronuclei. Compared to a concurrent control, 10 of 11 women with a BRCA1 mutation showed elevated radiation sensitivity. Of the 10 related women without the familial mutation, only 2 had clearly enhanced micronucleus frequencies. In addition to the sensitivity toward gamma-irradiation, hypersensitivity toward hydrogen peroxide was also observed, indicating that the mutagen sensitivity is not solely due to a defect in the repair of DNA double strand breaks. In contrast to the results with the micronucleus assay, we found no significant difference between women with and without a BRCA1 mutation with respect to the induction and repair of DNA damage in the comet assay. This finding suggests a normal rate of damage removal and points to a disturbed fidelity of DNA repair as a direct or indirect consequence of a BRCA1 mutation. Our results support the usefulness of induced micronucleus frequencies as a biomarker for cancer predisposition and suggest its application as a screening test for carriers of a BRCA1 mutation in breast cancer families.
Download full-text PDF |
Source |
---|
Int J Gynecol Cancer
January 2025
Division of Gynecologic Oncology, California Pacific/Palo Alto/Sutter Health Research Institute, San Francisco, CA, USA.
Objective: The aim of this study was to examine disparities in 20-year incidence trends and mutations in advanced-stage uterine cancer in the United States, given poor survival rates.
Methods: Data were obtained from the United States Cancer Statistics for patients from 2001 to 2019 with International Federation of Gynecology and Obstetrics 2009 stage IVA and IVB uterine cancer. SEER∗Stat 8.
BJUI Compass
January 2025
Division of Medical Oncology A Policlinico Umberto I Rome Italy.
Background: We present a systematic review and meta-analysis of randomized clinical trials (RCTs) with PARPi either as monotherapy or in combination with an androgen receptor-targeted agent (ARTA) in first- and second-line settings.
Methods: Primary endpoints are radiographic progression free survival (rPFS) and overall survival (OS) in patients with mCRPC and either unselected, homologous recombination repair wild-type (HRR-), homologous recombination repair mutated (HRR+) or with BRCA1, BRCA2, or ATM mutation. The effect of PARPi + ARTA in the second-line setting is also explored.
Acta Oncol
January 2025
Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
Background And Purpose: Despite advancements in genetic testing and expanded eligibility criteria, underutilisation of germline testing for pathogenic variants in BRCA1 and BRCA2 (BRCA) remains evident among breast cancer (BC) patients. This observational cohort study presents real-world data on BRCA testing within the context of clinical practice challenges, including incomplete family history and under-referral.
Material And Methods: From the Danish Breast Cancer Group (DBCG) clinical database, we included 65,117 females with unilateral stage I-III BC diagnosed in 2000-2017, of whom 9,125 (14%) were BRCA tested.
DNA Repair (Amst)
January 2025
Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil.
Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening.
View Article and Find Full Text PDFInt J Gynecol Pathol
January 2025
Department of Pathology and Immunology, Washington University.
High-grade serous carcinomas (HGSCs) with homologous recombination deficiency (HRD) respond favorably to platinum therapy and poly ADP ribose polymerase (PARP) inhibitors. Mutations in BRCA1 and BRCA2 commonly cause HRD and have been associated with Solid, pseudoEndometrioid, and Transitional-like (SET-like) histology. Mutations in other homologous recombination repair (HRR) genes as well as epigenetic changes can also result in HRD; however, morphologic correlates have not been well-explored in these cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!