Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4615-4793-8_97DOI Listing

Publication Analysis

Top Keywords

production 3-hydroxy
4
3-hydroxy fatty
4
fatty acids
4
acids yeast
4
yeast dipodascopsis
4
dipodascopsis uninucleata
4
uninucleata biological
4
biological implications
4
production
1
fatty
1

Similar Publications

Atorvastatin and fenofibrate are well-known lipid-lowering drugs. Atorvastatin acts by reducing the production of cholesterol through the inhibition of the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG Co-A reductase) enzyme, whereas fenofibrate is a PPAR-α agonist. Piperine is an alkaloid mostly found in black pepper fruits.

View Article and Find Full Text PDF

Ursolic acid (3-hydroxy-urs-12-ene-28-oic acid, UA) is a pentacyclic triterpene present in numerous plants, fruits and herbs and exhibits various pharmacological effects. However, UA has limited clinical applicability since it is classified as BCS class IV molecule, characterized by low solubility, low oral bioavailability and low permeability. In the present study, UA was isolated from the biomass marc of Lavandula angustifolia and was structurally modified by an induction of indole ring at the C-3 position and amide group at the C-17 position with the aim to enhance its pharmacological potential.

View Article and Find Full Text PDF

Dyslipidemia, an imbalance in blood lipid levels, is a frequent complication of type 2 diabetes mellitus (DM2) and heightens the risk of cardiovascular diseases (CVDs). Statins, which inhibit 3-hydroxy-3-methylglutaryl-CoA reductase, are potent competitive inhibitors that reduce plasma cholesterol levels. However, individual responses to statins can vary markedly, possibly due to genetic variations in the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) gene.

View Article and Find Full Text PDF

Poly(ionic liquid)-regulated green one-pot synthesis of Au@Pt porous nanospheres for the smart detection of acid phosphatase and organophosphorus inhibitor.

Talanta

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, College of Science in Donghua University, State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai), Key Laboratory of High Performance Fibers & Products, PR China. Electronic address:

Here, a green poly(ionic liquid)-regulated one-pot method is developed for the synthesis of Au@Pt core-shell nanospheres (PNSs) under mild reaction conditions in water. It is found that the poly(ionic liquid) poly[1-methyl-3-butyl (3-hydroxy) imidazole] chloride (PIL-Cl) is very vital to guide the construction of Au@Pt PNSs. The as-obtained Au@Pt-1 PNSs have perfect spherical outlines, porous core-shell structures and large specific surface area by which they exhibit excellent peroxidase-like activity in acidic media and can be used to develop a simple and reliable colorimetric sensing platform.

View Article and Find Full Text PDF

3-Hydroxybenzoic acid inhibits the virulence attributes and disrupts biofilm production in clinical isolates of Acinetobacter baumannii.

Eur J Clin Microbiol Infect Dis

December 2024

Infection and Inflammation, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.

Purpose: Acinetobacter baumannii (A. baumannii) is an emerging global public health threat owing to its ability to form biofilms. Here, we evaluated 3-hydroxybenzoic acid (3-HBA), a promising organic compound, for its ability to disrupt biofilm formation and virulence attributes in clinical isolates of A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!