Purpose: To assess the influence of the intercalating drug ethidium bromide (EtBr) on the yields of single strand breaks (ssb) induced by fast neutrons in supercoiled pBR322 plasmid and in a linear DNA restriction fragment.

Materials And Methods: The yield of ssb in the plasmid was measured by agarose gel electrophoresis. The proportion of fragments bearing one ssb and the probability of breakage at each nucleotide site was determined using sequencing gel electrophoresis. The volume variations due to the intercalation of EtBr were calculated. The expected radio-modifying effect at each nucleotide site of the linear fragment was evaluated using a reported simulation procedure.

Results: The ssb yield in the plasmid increased for concentrations up to 0.04 drug/bp and fell back in the range 0.04-0.1 drug/bp. For the linear DNA, only a slight protective effect was observed over the whole concentration range. The effect was almost the same at all nucleotide sites.

Conclusion: For the linear DNA fragment, radioprotection was mainly due to scavenging of OH* radicals by the intercalated drug. For the plasmid, the radio-modifying effect results mainly from the variation of its effective volume, due to the modification of superhelicity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/095530000138952DOI Listing

Publication Analysis

Top Keywords

linear dna
12
ethidium bromide
8
gel electrophoresis
8
nucleotide site
8
bromide intercalation
4
dna
4
intercalation dna
4
dna radiosensitivity
4
radiosensitivity purpose
4
purpose assess
4

Similar Publications

Postpartum depression (PPD) affects ~10-15% of childbearing individuals, with deleterious consequences for two generations. Recent research has explored the biological mechanisms of PPD, particularly neuroactive steroids (NAS). We sought here to investigate associations between NAS levels and ratios during pregnancy and the subsequent development of depressive symptoms with postpartum onset.

View Article and Find Full Text PDF

Background: The role of epigenetic aging in the environmental pathogenesis and prognosis of fibrotic interstitial lung disease (fILD) is unclear. We evaluated whether ambient particulate matter ≤2.5 μm (PM) and neighbourhood disadvantage exposures are associated with accelerated epigenetic aging, and whether epigenetic age is associated with adverse clinical outcomes in patients with fILD.

View Article and Find Full Text PDF

Background: Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants that may impact placental function, and potentially gestational age acceleration (GAA), a deviation from reported and predicted gestational age. GAA potentially represents differences in cell maturation in response to a challenging environment.

Objective: This study aimed to characterize the effects of individual and mixtures of PFAS on GAA, cell composition, birth length, and birthweight.

View Article and Find Full Text PDF

Deoxynivalenol (DON) is one of the most harmful mycotoxins that poses great health threats to human and animals. Herein, a simple and sensitive magnetic beads-based fluorescent biosensor was successfully prepared for detection of DON in cereals. A stable double-stranded DNA (dsDNA, biotin-sDNA+FAM-cDNA/AP) was formed on the surface of streptavidin-coated magnetic beads (SMBs).

View Article and Find Full Text PDF

Background: Whether adverse childhood experiences (ACEs) are associated with accelerated epigenetic aging over time among the Hispanic/Latino population remains unknown. This study examined the longitudinal association between ACEs and epigenetic age acceleration (EAA), as well as potential effect modifiers, among a sample of Hispanic/Latino adults.

Methods: We analyzed 960 Hispanic/Latino adults with DNA methylation (DNAm) profile data from two visits (approximately six years apart) sampled from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!