Mastoparan induces Ca(2+)-dependent deflagellation of the unicellular green alga Chlamydomonas moewusii Gerloff, as well as the activation of phospholipase C and the production of inositol 1,4, 5-trisphosphate (InsP(3); T. Munnik et al., 1998, Planta 207: 133-145). Even in the absence of extracellular Ca(2+), mastoparan still induces deflagellation (L.M. Quarmby and H.C. Hartzell, 1994, J Cell Biol 124: 807-815; J.A.J. van Himbergen et al., 1999, J Exp Bot, in press) suggesting that InsP(3) mediates Ca(2+) release from intracellular stores. To test this hypothesis, cells were pre-loaded with (45)Ca(2+) and their plasma membranes permeabilized by digitonin. Subsequent treatment of the cells with mastoparan (3.5 microM) induced release of intracellular (45)Ca(2+). Mastoparan also activated phospholipase C in permeabilized cells, as demonstrated by the breakdown of (32)P-phosphatidylinositol 4,5-bisphosphate and the production of diacylglycerol. The mastoparan analogues mas7 and mas17 were also effective and their efficacy was correlated with their biological activity. X-ray microanalysis showed that electron-dense bodies (EDBs) are a major Ca(2+) store in C. moewusii. Analysis of digitonin-permeabilized cells showed that EDBs lost calcium at digitonin concentrations that released radioactivity from (45)Ca(2+)-labelled cells, suggesting that (45)Ca(2+) monitored the content of EDBs. X-ray microanaysis of living cells treated with mastoparan also revealed that calcium was released from EDBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/PL00008136 | DOI Listing |
Int J Mol Sci
December 2024
Molecular Cell Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
Rice plants are important food crops that are sensitive to cold stress. Microtubules (MTs) are highly associated with plant response to cold stress. The exogenous application of abscisic acid (ABA) can transiently induce the cold stability of microtubules.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2025
Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States of America. Electronic address:
Staphylococcus aureus readily adapts to various environments and quickly develops antibiotic resistance, which has led to an increase in multidrug-resistant infections. Hence, S. aureus presents a significant global health issue and its adaptations to the host environment are crucial for understanding pathogenesis and antibiotic susceptibility.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 71966-900, Brazil.
Skin wound healing is coordinated by a delicate balance between proinflammatory and anti-inflammatory responses, which can be affected by opportunistic pathogens and metabolic or vascular diseases. Several antimicrobial peptides (AMPs) possess immunomodulatory properties, suggesting their potential to support skin wound healing. Here, we evaluated the proregenerative activity of three recently described AMPs (Clavanin A, Clavanin-MO, and Mastoparan-MO).
View Article and Find Full Text PDFViruses
June 2024
Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, DF, Brazil.
Human alphaherpesvirus 1 (HSV-1) is a significantly widespread viral pathogen causing recurrent infections that are currently incurable despite available treatment protocols. Studies have highlighted the potential of antimicrobial peptides sourced from venom, particularly those belonging to the mastoparan family, as effective against HSV-1. This study aimed to demonstrate the antiviral properties of mastoparans, including mastoparan-L [I, R], mastoparan-MO, and [I, R] mastoparan, against HSV-1.
View Article and Find Full Text PDFSci Rep
June 2024
Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.
Adjuvants enhance, prolong, and modulate immune responses by vaccine antigens to maximize protective immunity and enable more effective immunization in the young and elderly. Most adjuvants are formulated with injectable vaccines. However, an intranasal route of vaccination may induce mucosal and systemic immune responses for enhancing protective immunity in individuals and be easier to administer compared to injectable vaccines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!