Familial hypertrophic cardiomyopathy is a genetically and phenotypically heterogeneous disease caused by mutations in seven sarcomeric protein genes. It is known to be transmitted as an autosomal dominant trait with rare de novo mutations.A French family in which two members are affected by hypertrophic cardiomyopathy was clinically screened with electrocardiography and echocardiography. Genetic analyses were performed on leucocyte DNA by haplotype analysis with microsatellite markers at the MYH7 locus and mutation screening by single strand conformation polymorphism analysis. Two subjects exhibited severe hypertrophic cardiomyopathy. A mutation in the MYH7 gene was found in exon 14 (Arg453Cys). The two affected patients were carriers of the mutation, which was not found in the circulating lymphocytes of their parents. Haplotype analysis at the MYH7 locus with two intragenic microsatellite markers (MYOI and MYOII) and the absence of the mutation in the father's sperm DNA suggested that the mutation had been inherited from the mother. However, it was not found in either her fibroblasts or hair. This is the first description of germline mosaicism shown by molecular genetic analysis in an autosomal dominant disorder and more especially in hypertrophic cardiomyopathy. This mosaicism had been inherited from the mother but did not affect her somatic cells. Such a phenomenon might account for some de novo mutations in familial hypertrophic cardiomyopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1734529PMC
http://dx.doi.org/10.1136/jmg.37.2.132DOI Listing

Publication Analysis

Top Keywords

hypertrophic cardiomyopathy
24
familial hypertrophic
12
description germline
8
germline mosaicism
8
autosomal dominant
8
haplotype analysis
8
microsatellite markers
8
myh7 locus
8
inherited mother
8
hypertrophic
6

Similar Publications

Cardiac MRI Evaluation of Heart Failure and Cardiomyopathies.

R I Med J (2013)

February 2025

Brown University Health Cardiovascular Institute; Rhode Island, the Miriam and Newport Hospitals; Warren Alpert Medical School, Brown University.

Cardiac magnetic resonance imaging (CMR) is an exciting noninvasive imaging modality with increasing utilization in the field of cardiovascular medicine. In conjunction with echocardiogram, computed tomography, and invasive therapies, CMR has provided exceptional capability to further evaluate complex clinical cardiac conditions. CMR provides both anatomical and physiological information of a variety of tissue types, without the need for ionizing radiation.

View Article and Find Full Text PDF

The left atrium (LA) is pivotal in cardiac hemodynamics, serving as a dynamic indicator of left ventricular (LV) compliance and diastolic function. The LA undergoes structural and functional adaptations in response to hemodynamic stress, infiltrative processes, myocardial injury, and arrhythmic triggers. Remodeling of the LA in response to these stressors directly impacts pulmonary circulation, eventually leading to pulmonary capillary involvement, pulmonary artery hypertension, and eventually right ventricular failure.

View Article and Find Full Text PDF

Aims: How the underlying etiology and pathophysiology of left ventricular (LV) hypertrophy affects LA remodeling and function remains unexplored. The present study aims to investigate the influence of various hypertrophic phenotypes on LA remodeling and function.

Methods And Results: Patients with LV hypertrophy who underwent cardiac magnetic resonance (CMR) were compared to a control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!