N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a variety of alkylated purine adducts. Although Asp was identified as the active site residue in various DNA glycosylases based on the crystal structure, Glu-125 in human MPG (Glu-145 in mouse MPG) was recently proposed to be the catalytic residue. Mutational analysis for all Asp residues in a truncated, fully active MPG protein showed that only Asp-152 (Asp-132 in the human protein), which is located near the active site, is essential for catalytic activity. However, the substrate binding was not affected in the inactive Glu-152, Asn-152, and Ala-152 mutants. Furthermore, mutation of Asp-152 did not significantly affect the intrinsic tryptophan fluorescence of the enzyme and the far UV CD spectra, although a small change in the near UV CD spectra of the mutants suggests localized conformational change in the aromatic residues. We propose that in addition to Glu-145 in mouse MPG, which functions as the activator of a water molecule for nucleophilic attack, Asp-152 plays an essential role either by donating a proton to the substrate base and, thus, facilitating its release or by stabilizing the steric configuration of the active site pocket.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.275.6.4278 | DOI Listing |
Acta Crystallogr F Struct Biol Commun
February 2025
Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.
Periodontal diseases afflict 20-50% of the global population and carry serious health and economic burdens. Chronic periodontitis is characterized by inflammation of the periodontal pocket caused by dysbiosis. This dysbiosis is coupled with an increase in the population of Treponema denticola, a spirochete bacterium with high mobility and invasivity mediated by a number of virulence factors.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.
OaPAC, the photoactivated adenylyl cyclase from , is composed of a blue light using FAD (BLUF) domain fused to an adenylate cyclase (AC) domain. Since both the BLUF and AC domains are part of the same protein, OaPAC is a model for understanding how the ultrafast modulation of the chromophore binding pocket caused by photoexcitation results in the activation of the output domain on the μs-s time scale. In the present work, we use unnatural amino acid mutagenesis to identify specific sites in the protein that are involved in transducing the signal from the FAD binding site to the ATP binding site.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
c-Myc is a transcription factor that is overexpressed in most human cancers. Despite its challenging nature, we have developed a series of naphthalimide-imidazopyrazine conjugates to target c-Myc. The library of synthesized derivatives was tested for their anticancer activity against a nine-panel of cancer cell lines.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Ammonia synthesis via nitrate electroreduction is more attractive and sustainable than the energy-extensive Haber-Bosch process and intrinsically sluggish nitrogen electroreduction. Herein, we have designed a single-site Cu catalyst on hierarchical nitrogen-doped carbon nanocage support (Cu/hNCNC) for nitrate electroreduction, which achieves an ultrahigh ammonia yield rate (YR) of 99.4 mol h g (2.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Department of Endocrinology and Metabolism, School of Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: α-Glucosidase inhibitors play an important role in the treatment of type 2 diabetes mellitus. Inhibitors of the latter enzyme that are available on the market created gastrointestinal side effects and achieve to a high potent and low side effect potent α-glucosidase inhibitors is a valuable target for medicinal chemists.
Objective: In this study, derivatives of benzimidazole-phenoxy-1,2,3-triazole-benzyl skeleton were introduced as new α-glucosidase inhibitors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!