Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: When we view static scenes that imply motion - such as an object dropping off a shelf - recognition memory for the position of the object is extrapolated forward. It is as if the object in our mind's eye comes alive and continues on its course. This phenomenon is known as representational momentum and results in a distortion of recognition memory in the implied direction of motion. Representational momentum is modifiable; simply labelling a drawing of a pointed object as 'rocket' will facilitate the effect, whereas the label 'steeple' will impede it. We used functional magnetic resonance imaging (fMRI) to explore the neural substrate for representational momentum.
Results: Subjects participated in two experiments. In the first, they were presented with video excerpts of objects in motion (versus the same objects in a resting position). This identified brain areas responsible for motion perception. In the second experiment, they were presented with still photographs of the same target items, only some of which implied motion (representational momentum stimuli). When viewing still photographs of scenes implying motion, activity was revealed in secondary visual cortical regions that overlap with areas responsible for the perception of actual motion. Additional bilateral activity was revealed within a posterior satellite of V5 for the representational momentum stimuli. Activation was also engendered in the anterior cingulate cortex.
Conclusions: Considering the implicit nature of representational momentum and its modifiability, the findings suggest that higher-order semantic information can act on secondary visual cortex to alter perception without explicit awareness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0960-9822(99)00259-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!