Twenty-four multiparous lactating Holstein cows were blocked by days in milk and assigned to treatment sequences in a replicated 4x4 Latin square with 21-d periods. The four diets, formulated from alfalfa silage plus a concentrate mix based on ground high moisture ear corn, contained [dry matter (DM) basis]: 1) 20% concentrate, 80% alfalfa silage (24% nonfiber carbohydrates; NFC), 2) 35% concentrate, 65% alfalfa silage (30% NFC), 3) 50% concentrate, 50% alfalfa silage (37% NFC), or 4) 65% concentrate, 35% alfalfa silage (43% NFC). Soybean meal and urea were added to make diets isonitrogenous with equal nonprotein N (43% of total N). Intake of DM and milk yield indicated that adaptation was complete within 7 d of changing the diets within the Latin square. There were linear increases in apparent digestibility of DM and organic matter, and a linear decrease in neutral detergent fiber (NDF) digestibility with increasing dietary NFC. Solutions of significant quadratic equations yielded estimated maxima for intake of DM, organic matter, digestible organic matter, and NDF at, respectively, 37, 38, 43, and 27% dietary NFC. There were linear increases in yields of milk, protein, lactose, and solids not fat with increasing dietary NFC. Feed efficiency (milk/DM intake) yielded a quadratic response with a minimum at 27% dietary NFC. Maxima for milk fat content, fat yield, and fat-corrected milk yield were estimated to occur at, respectively, 30, 34 and 38% dietary NFC. In this short-term trial, maximal DM intake and fat-corrected milk yield indicated that the optimum concentrate for cows fed high moisture ear corn plus alfalfa silage as the only forage was equivalent to 37 to 38% dietary NFC; however, yields of milk, protein and solids not fat were still increasing at 65% dietary concentrate (43% NFC).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.S0022-0302(00)74861-2 | DOI Listing |
Animals (Basel)
December 2024
College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
Alfalfa silage due to its high protein can lead to easier feeding management, but its high proportion of rumen-degradable protein can reduce rumen nitrogen utilization. Nevertheless, increasing dietary energy can enhance ruminal microbial protein synthesis. Thirty-two Suffolk female sheep were used in this study, with a 2 × 2 factorial arrangement of treatment.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Agriculture and Agri-Food Canada, Quebec Research and Development Centre, Quebec, QC G1V 2J3 Canada.
This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.
View Article and Find Full Text PDFMicroorganisms
December 2024
Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010019, China.
Phycocyanin is a water-soluble pigment protein extracted from prokaryotes such as cyanobacteria and has strong antioxidant activity. As a silage additive, it is expected to enhance the antioxidant activity and fermentation quality of alfalfa silage. This study revealed the effects of different proportions of phycocyanin (1%, 3%, 5%) on the quality, bacterial community and antioxidant capacity of alfalfa silage.
View Article and Find Full Text PDFAMB Express
December 2024
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, 50295, Toluca, Estado de México, Mexico.
Reducing greenhouse gas (GHG) emissions from livestock is a crucial step towards mitigating the impact of climate change and improving environmental sustainability in agriculture. This study aimed to evaluate the effects of Yucca schidigera extract, chitosan, and chitosan nanoparticles as feed additives on in vitro GHG emissions and fermentation profiles in ruminal fluid from bulls. Total gas, CH, CO, and HS emissions (up to 48 h), rumen fermentation profiles, and CH conversion efficiency were measured using standard protocols.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
U.S. Dairy Forage Research Center, USDA-ARS, Madison, WI. Electronic address:
Sizes and rates of potentially digestible (B) and undegradable (C) pools of amylase-treated neutral detergent fiber (aNDF) are used to predict ruminal aNDF digestibility (aNDFD%) in widely used dairy cattle diet formulation programs. An exponential 3-pool model (3P) has been suggested for estimating digestion kinetic parameters for this purpose, however, the approach has not been compared with using a simpler exponential 2-pool model (2P), nor with using commercial laboratory (lab) data on which application would rely, nor on model impact on predictions of aNDFD% which is the aim of their application. Our objective was to determine whether 2P or 3P most accurately and efficiently characterizes aNDF digestion kinetics and if the models differed in predicted aNDFD%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!