The role of the sleB gene of Bacillus subtilis, which encodes a putative spore-cortex-lytic enzyme, and the downstream ypeB gene were investigated. Both SleB and YpeB were required for normal germination to occur. The corresponding mutants formed phase-bright, heat-resistant spores with no apparent defects in dormancy. However, mutant spore suspensions lost optical density slower than the wild-type and spores were phase-grey even 12 h after the triggering of germination. Since the loss of heat resistance and release of dipicolinic acid was similar to the wild-type, these mutants were blocked in the later stages of germination. The mutants were nevertheless capable of outgrowth on rich agar to form colonies, indicating that other spore components can compensate for their function sufficiently to allow outgrowth. The expression and regulation of the operon was examined using a lacZ transcriptional fusion. Expression of the operon began 2 h after the onset of sporulation and was under the control of RNA polymerase containing the forespore-specific sigma factor, sigmaG. The application of reverse phase HPLC revealed that the mutants do not have any structural defect in the dormant spore cortex and therefore these genes are not required for normal spore-cortex synthesis. The analysis of peptidoglycan dynamics during germination showed, however, that the cortex was only partially hydrolysed in both mutants. This analysis also revealed that the likely hydrolytic bond specificity of SleB is likely to be that of a lytic transglycosylase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00221287-146-1-57 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant . Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Bacillus Tech LLC.
The Cry1Fa insecticidal protein from (Bt) was expressed on the surface of (Bs) spores to create transgenic Bs spores referred to as Spore-Cry1Fa. Cry1Fa, along with its leader sequence, was connected to the carboxyl end of a Bs spore outercoat protein, CotC, through a flexible linker. The Arg-27 residue of the Cry1Fa protein was mutated to Leu to prevent detachment from the spores due to protease digestion.
View Article and Find Full Text PDFBiochem J
January 2025
The Sun Yat-Sen University, Guangzhou, China.
The N6-methyladenine (6mA) modification is an essential epigenetic marker and plays a crucial role in processes, such as DNA repair, replication, gene expression regulation, etc. YerA from Bacillus subtilis is considered a novel class of enzymes capable of catalyzing the deamination of 6mA to produce hypoxanthine. Despite the significance of this type of enzymes in bacterial self-defense systems and potential applications as a gene-editing tool, the substrate specificity, the catalytic mechanism and the physiological function of YerA are currently unclear due to the lack of structural information.
View Article and Find Full Text PDFPLoS One
January 2025
Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan.
This study evaluated the effectiveness of a biosafety cabinet equipped with an ozone generator, particularly during the transition periods between the production of cell products. As living cell products cannot undergo sterilization, maintaining an aseptic manufacturing environment is paramount. Raw materials, often derived from human tissues, are frequently contaminated with various resident bacteria, necessitating environmental resets after each process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!