During late postnatal development, mice with the autosomal recessive wobbler mutation (wr/wr) develop motoneuron degeneration associated with astrogliosis in the spinal cord. In vitro, primary wobbler astrocytes are also affected, exhibiting abnormal cell-cell contacts. To characterize further the wobbler disease, we investigated the in vitro effects of wobbler astrocytes on primary neuronal cultures from the spinal cords of 15-day-old wild-type mouse and rat embryos. Cocultures with the wobbler astrocytes, or direct addition of wobbler astrocyte-conditioned medium, led to a decrease in neuron number in primary mixed neuronal cultures, containing motoneurons and interneuron-like cells. In contrast, wobbler astrocyte-conditioned medium enhanced survival of highly purified motoneurons. These in vitro results suggest the possibility that wobbler astrocytes act not on motoneurons directly but, rather, through other spinal neurons to induce motoneuron degeneration in the wobbler disease.
Download full-text PDF |
Source |
---|
Cells
June 2024
Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron degeneration in the central nervous system. Recent research has increasingly linked the activation of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome to ALS pathogenesis. NLRP3 activation triggers Caspase 1 (CASP 1) auto-activation, leading to the cleavage of Gasdermin D (GSDMD) and pore formation on the cellular membrane.
View Article and Find Full Text PDFEur J Transl Myol
August 2023
Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
The wobbler mouse is a widely used model system of amyotrophic lateral sclerosis and exhibits progressive neurodegeneration and neuroinflammation in association with skeletal muscle wasting. This study has used wobbler brain preparations for the systematic and mass spectrometric determination of proteome-wide changes. The proteomic characterization of total protein extracts from wobbler specimens was carried out with the help of an Orbitrap mass spectrometer and revealed elevated levels of glia cell marker proteins, i.
View Article and Find Full Text PDFCell Mol Neurobiol
July 2023
Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina.
The Wobbler mouse is an accepted model of sporadic amyotrophic lateral sclerosis. The spinal cord of clinically symptomatic animals (3-5 months old) shows vacuolar motoneuron degeneration, inflammation, and gliosis accompanied by motor impairment. However, data are not conclusive concerning pathological changes appearing early after birth.
View Article and Find Full Text PDFMol Neurobiol
May 2021
Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina.
Patients suffering of amyotrophic lateral sclerosis (ALS) present motoneuron degeneration leading to muscle atrophy, dysphagia, and dysarthria. The Wobbler mouse, an animal model of ALS, shows a selective loss of motoneurons, astrocytosis, and microgliosis in the spinal cord. The incidence of ALS is greater in men; however, it increases in women after menopause, suggesting a role of sex steroids in ALS.
View Article and Find Full Text PDFBrain Res
January 2020
Laboratories of Neuroendocrine Biochemistry and Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina. Electronic address:
The Wobbler mouse spinal cord shows vacuolated motoneurons, glial reaction, inflammation and abnormal glutamatergic parameters. Wobblers also show deficits of motor performance. These conditions resemble amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!