Tyrosine hydroxylase (TH) activity can be modified by changes in the specific activity of the enzyme (SA(TH)) or in the levels of active enzyme. We developed a methodology making it possible to measure with excellent anatomical resolution TH enzymatic activity and TH protein quantity by quantitative autoradiography and immunoautoradiography, respectively, from adjacent sections taken at serial intervals along the longitudinal extent of a same brain. SA(TH) was estimated by the slope of linear regressions established between TH activity and TH quantity measured at each anatomical plane. To evaluate TH activity, we used (3',5')-[(3)H(2)]-(D, L)-alpha-fluoromethyl-tyrosine [(3)H(2)]-MFMT, which is transformed by TH to [(3)H]-MFM-dopa, a potent and irreversible substrate for aromatic amino acid decarboxylase. We found that the SA(TH) in the cell body area of the LC (PKA) was 48% lower than that evaluated in the surrounding pericoerulean neuropil (PCN). In the PCN, 22% only of TH level exhibited a level of enzymatic activity above threshold. We also examined how SA(TH) was distributed in the LC 15 min and 3 days after RU 24722 treatment, a potent phasic and tonic activator of TH enzyme in noradrenergic neurons. Two distinct mechanisms have been observed: the short-term effect was due to an increase in the SA(TH) in the PKA only, while the long-term effect was mainly caused by an increase in the number of active TH proteins in the PCN. These results suggest that the fine regulation of TH activity which occurs in the different compartments of LC neurons may be critical in the functions involving the LC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1098-2396(20000301)35:3<201::AID-SYN5>3.0.CO;2-VDOI Listing

Publication Analysis

Top Keywords

tyrosine hydroxylase
8
activity
8
hydroxylase activity
8
enzymatic activity
8
sath
5
situ examination
4
examination tyrosine
4
activity rat
4
rat locus
4
locus coeruleus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!