A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. | LitMetric

Bcl-2 family protein including anti-apoptotic (Bcl-2) or pro-apoptotic (Bax) members can form ion channels when incorporated into synthetic lipid bilayers. This contrasts with the observation that Bcl-2 stabilizes the mitochondrial membrane barrier function and inhibits the permeability transition pore complex (PTPC). Here we provide experimental data which may explain this apparent paradox. Bax and adenine nucleotide translocator (ANT), the most abundant inner mitochondrial membrane protein, can interact in artificial lipid bilayers to yield an efficient composite channel whose electrophysiological properties differ quantitatively and qualitatively from the channels formed by Bax or ANT alone. The formation of this composite channel can be observed in conditions in which Bax protein alone has no detectable channel activity. Cooperative channel formation by Bax and ANT is stimulated by the ANT ligand atractyloside (Atr) but inhibited by ATP, indicating that it depends on the conformation of ANT. In contrast to the combination of Bax and ANT, ANT does not form active channels when incorporated into membranes with Bcl-2. Rather, ANT and Bcl-2 exhibit mutual inhibition of channel formation. Bcl-2 prevents channel formation by Atr-treated ANT and neutralizes the cooperation between Bax and ANT. Our data are compatible with a ménage à trois model of mitochondrial apoptosis regulation in which ANT, the likely pore forming protein within the PTPC, interacts with Bax or Bcl-2 which influence its pore forming potential in opposing manners.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1203298DOI Listing

Publication Analysis

Top Keywords

bax ant
16
channel formation
12
ant
11
bcl-2
8
channel activity
8
adenine nucleotide
8
nucleotide translocator
8
bax
8
channels incorporated
8
lipid bilayers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!