Purpose: The objectives of this study were to evaluate effects of hyperthermia on tumor oxygenation, extracellular pH (pHe), and blood flow in 13 dogs with spontaneous soft tissue sarcomas prior to and after local hyperthermia.
Methods And Materials: Tumor pO2 was measured using an Eppendorf polarographic device, pHe using interstitial electrodes, and blood flow using contrast-enhanced magnetic resonance imaging (MRI).
Results: There was an overall improvement in tumor oxygenation observed as an increase in median pO2 and decrease in hypoxic fraction (% of pO2 measurements <5 mm Hg) at 24-h post hyperthermia. These changes were most pronounced when the median temperature (T50) during hyperthermia treatment was less than 44 degrees C. Tumors with T50 > 44 degrees C were characterized by a decrease in median PO2 and an increase in hypoxic fraction. Similar thermal dose-related changes were observed in tumor perfusion. Perfusion was significantly higher after hyperthermia. Increases in perfusion were most evident in tumors with T50 < 44 degrees C. With T50 > 44 degrees C, there was no change in perfusion after hyperthermia. On average, pHe values declined in all animals after hyperthermia, with the greatest reduction seen for larger T50 values.
Conclusion: This study suggests that hyperthermia has biphasic effects on tumor physiologic parameters. Lower temperatures tend to favor improved perfusion and oxygenation, whereas higher temperatures are more likely to cause vascular damage, thus leading to greater hypoxia. While it has long been recognized that such effects occur in rodent tumors, this is the first report to tie such changes to temperatures achieved during hyperthermia in the clinical setting. Furthermore, it suggests that the thermal threshold for vascular damage is higher in spontaneous tumors than in more rapidly growing rodent tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0360-3016(99)00362-4 | DOI Listing |
Pulmonology
December 2025
Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.
Background: Nasal high flow (NHF) has been proposed to sustain high intensity exercise in people with COPD, but we have a poor understanding of its physiological effects in this clinical setting.
Research Question: What is the effect of NHF during exercise on dynamic respiratory muscle function and activation, cardiorespiratory parameters, endurance capacity, dyspnoea and leg fatigue as compared to control intervention.
Study Design And Methods: Randomized single-blind crossover trial including COPD patients.
J Exp Bot
January 2025
Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476 Potsdam-Golm, Germany.
The plastidial α-glucan phosphorylase (PHS1) can catalyze the elongation and degradation of glucans, but its exact physiological role in plants is not completely deciphered. A plethora of studies have indicated that PHS1 is involved in transitory starch turnover, both in photosynthetic tissues as well as reserve starch accumulation in sink organs of multiple species, by exerting its effects on the plastidial maltodextrin pools. Recent studies have also established its role in the mobilization of short maltooligosaccharides (MOSs), thereby assisting in starch granule initiation.
View Article and Find Full Text PDFFront Sports Act Living
January 2025
Section of Sports Medicine, Department of Community Medicine and Rehabilitation, Umeå School of Sport Sciences, Umeå University, Umeå, Sweden.
Introduction: Predicting competitive alpine skiing performance using conventional statistical methods has proven challenging. Many studies assessing the relationship between physiological performance and skiing outcomes have employed statistical methods of questionable validity. Furthermore, the reliance on Fédération Internationale de Ski (FIS) points as a performance outcome variable presents additional limitations due to its potential unreliability in reflecting short-term, sport-specific performance.
View Article and Find Full Text PDFFront Physiol
January 2025
Centre de Recherche de l'Institute Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, QC, Canada.
Introduction: In high-altitude cities located above 2,500 m, hospitals face a concerning mortality rate of over 50% among intensive care unit (ICU) patients with acute respiratory distress syndrome (ARDS). This elevated mortality rate is largely due to the absence of altitude-specific medical protocols that consider the unique physiological adaptations of high-altitude residents to hypoxic conditions. This study addresses this critical gap by analyzing demographic, clinical, sex-specific, and preclinical data from ICUs in Bogotá, Colombia (2,650 m) and El Alto, Bolivia (4,150 m).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychology, Faculty of Psychology and Sport Science, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Gießen, Germany.
Adapting movements to rapidly changing conditions is fundamental for interacting with our dynamic environment. This adaptability relies on internal models that predict and evaluate sensory outcomes to adjust motor commands. Even infants anticipate object properties for efficient grasping, suggesting the use of internal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!