A possible defect of guanosine 3'-5'-cyclic monophosphate (cGMP) content in the renal tissue caused by an increased activity of cGMP phosphodiesterase (PDE) has, so far, not been evaluated in the pathogenesis of renal resistance to endogenous natriuretic peptides (ENP) in cirrhosis with ascites. To test this hypothesis the activity of cGMP-PDE and the concentration of cGMP were evaluated in vitro in the renal tissue of 10 control rats and 10 cirrhotic rats with ascites before and after the intravenous (IV) administration of Zaprinast (Sigma, St. Louis, MO), a specific cGMP-PDE inhibitor (30 microgram/kg/min). Moreover, the effects of the intravenous administration of Zaprinast (15 microgram/kg/min and 30 microgram/kg/min) on renal plasma flow (RPF), glomerular filtration rate (GFR), and urinary sodium excretion (U(Na)V) were evaluated in 10 conscious control rats and 10 conscious cirrhotic rats with ascites. The effects of Zaprinast on plasma renin activity (PRA) was also evaluated in 10 control rats and in 10 cirrhotic rats with ascites. Finally, the effect of Zaprinast on RPF, GFR, and U(Na)V were evaluated in 10 cirrhotic rats after the IV administration of the ENP-receptor antagonist, HS-142-1. The renal content of cGMP was reduced in cirrhotic rats because of increased activity of cGMP-PDE. Zaprinast inhibited cGMP-PDE activity and increased the renal content of cGMP in these animals. The inhibition of cGMP-PDE was associated with an increase in RPF, GFR, and U(Na)V and a reduction in PRA. HS-142-1 prevented any renal effect of Zaprinast in cirrhotic rats. In conclusion, an increased activity of the cGMP-PDE in renal tissue contributes to the renal resistance to ENP in cirrhosis with ascites.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.510310207DOI Listing

Publication Analysis

Top Keywords

cirrhotic rats
28
increased activity
16
renal tissue
16
rats ascites
16
activity cgmp-pde
12
control rats
12
renal
10
rats
10
guanosine 3'-5'-cyclic
8
3'-5'-cyclic monophosphate
8

Similar Publications

The liver lymphatic system plays a critical role in maintaining interstitial fluid balance and immune regulation. Efficient lymphatic drainage is essential for liver homeostasis, but its role in liver disease progression remains poorly understood. In cirrhosis, lymphangiogenesis initially compensates for increased lymph production, but impaired lymphatic drainage in advanced stages may lead to complications such as ascites and portal hypertension.

View Article and Find Full Text PDF
Article Synopsis
  • A method was developed to model liver cirrhosis in male Wistar rats by performing a significant liver resection (about 70% volume).
  • After surgery, one group received ademetionine while the control group got saline; both had various tests conducted on them over a 14-day period.
  • Results indicated that the ademetionine group experienced notable liver dysfunction, with laboratory tests showing significant abnormalities, along with observable fibrotic, cirrhotic, and inflammatory liver changes that persisted beyond the testing period.
View Article and Find Full Text PDF

Background: Recent studies suggest a contribution of intrahepatic mineralocorticoid receptor (MR) activation to the development of cirrhosis. As MR blockade abrogates the development of cirrhosis and hypoxia, common during the development of cirrhosis, can activate MR in hepatocytes. But, the impact of non-physiological hepatic MR activation is unknown.

View Article and Find Full Text PDF

Background: The therapeutic effect of mesenchymal stem cells (MSCs) in liver cirrhosis is limited by their entrapment in the pulmonary vessels. Thus, the use of MSC-derived exosomes has become a promising strategy. The current work aimed to compare the role of human umbilical cord blood-MSCs (hUCB-MSCs) and their derived exosomes in the alleviation of liver cirrhosis focusing on the role of miR-23b and miR-221 and their direct effectors in inflammatory and autophagic pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!