The Rotary Cell Culture System (RCCS) is a new technology for growing anchorage dependent or suspension cells in the laboratory. The RCCS is a horizontally rotated, bubble free disposable culture vessel with diffusion gas exchange. The system provides a reproducible, complex 3D in vitro culture system with large cell masses. During cell growing the rotation speed can be adjusted to compensate for increased sedimentation rates. The unique environment of low shear forces, high mass transfer, and microgravity, provides very good cultivating conditions for many cell types, cell aggregates or tissue particles in a standard tissue culture laboratory. The system enables to culture HepG2 cells on Cytodex 3 microcarriers (mcs) to high densities. We inoculated 2 x 10(5)/ml HepG2 cells and 200 mg Cytodex 3 mcs in 50 ml Williams E medium (incl. 10% FCS) allowing them to attach to the mcs in the rotating vessel (rotation rate 14-20 rpm). HepG2 cells readily attached to the mcs while the vessel was rotating. Attachment of HepG2 to the mcs was about 50% after 24 hrs and 100 % within 48 hrs. After 72 hrs of rotary culturing small aggregates of Hep G2 on mcs were built. HepG2 cells and the aggregates rotated with the vessel and did not settle within the vessel or collide with the wall of the vessel. We conclude that this new RCCS is an excellent technology for culturing HepG2 cells on Cytodex 3 mcs. The system is easy to handle and enables to culture anchorage dependent cells to high densities in a short period.
Download full-text PDF |
Source |
---|
BMC Gastroenterol
January 2025
Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
Background: Neuregulin (NRG) family is involved in energy metabolism, among which NRG1 is a neuregulin proved to play a protective role in MAFLD cells. But the presice echanism has not been fully illustrated. This study aimed to investigate the role of NRG1 via the ERK/SIRT1 signaling in the pathogenesis of MAFLD.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
Pirfenidone (PIR) is used in the treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China. Electronic address:
This study aimed to investigate the associations of liquid-liquid phase separation (LLPS) and tumor stemness in hepatocellular carcinomas (HCC). LLPS-related genes were extracted from DrLLPS, LLPSDB and PhaSepDB databases. Stemness index (mRNAsi) was calculated based on the data from TCGA and Progenitor Cell Biology Consortium.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2025
Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, FL 32209, United States of America.
Lipid accumulation in hepatocytes in non-alcoholic steatohepatitis (NASH) is attributed partly to loss of insulin-responsiveness and/or an increased pro-inflammatory state. Since the rare sugar D-allulose has insulin mimetic and anti-inflammatory properties, its effects on lipid accumulation in liver-derived cells was tested. In HepG2 cells exposed to 200 μM oleic acid for 72 h, D-allulose treatment decreased intracellular lipid accumulation with an IC = 0.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!