DC-ELF characterization of random mixtures of piecewise nonlinear media.

Bioelectromagnetics

ICEmB at DIBE, University of Genoa, Genoa, Italy.

Published: February 2000

Biological tissues are ensembles of linear and nonlinear, symmetric and asymmetric constituents. As far as their electromagnetic characterization is concerned, they can be modeled as microscopic mixtures of the corresponding material media. Any medium volume can be properly discretized in a finite number of cells which can be modeled as an equivalent three dimensional network of lumped components, in order to characterize its electromagnetic behavior at wavelengths much longer than the relevant average linear size of the constitutive cells. Therefore, any mixture and the corresponding tissue can be characterized in terms of its effective conductance at extremely low frequency, with respect to a reference set of electrodes (ports of the equivalent network). When the above procedure is implemented for evaluating any of the aforesaid conductances, a resulting nonlinear characteristic should be expected. In reality, it may happen that the effect of the constitutive nonlinearities and the related asymmetries are smeared out by the randomness of the interconnections of the lumped components, leading at a macroscopic level to an isotropic constant equivalent conductance, i.e., to an isotropic constant equivalent conductivity of the mixture. The closed form analysis of a random network of nonlinear (piecewise linear) resistors offers a simple but clear cut example of such a property. This result, if extrapolated to biological media, suggests a new hint for explaining why there is no inconsistency between the typical electric characterization of biological tissues as almost linear macroscopic media, by means of their effective conductivity and permittivity, and the nonlinearities of the biochemical processes occurring in the tissue cells. In fact, the nonlinearities may not be observable by means of macroscopic electrical measurements because of the randomized spatial orientation and location of the processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1521-186x(200002)21:2<145::aid-bem10>3.0.co;2-5DOI Listing

Publication Analysis

Top Keywords

biological tissues
8
lumped components
8
isotropic constant
8
constant equivalent
8
dc-elf characterization
4
characterization random
4
random mixtures
4
mixtures piecewise
4
nonlinear
4
piecewise nonlinear
4

Similar Publications

Avian Reovirus: From Molecular Biology to Pathogenesis and Control.

Viruses

December 2024

Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA.

Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver.

View Article and Find Full Text PDF

Phlorotannin-Rich Seaweed Extract Inhibits Influenza Infection.

Viruses

December 2024

Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.

Seaweed-derived compounds are a renewable resource utilised in the manufacturing and food industry. This study focuses on an enriched seaweed extract (ESE) isolated from The ESE was screened for antiviral activity by plaque reduction assays against influenza A/Puerto Rico/8/1934 H1N1 (PR8), A/X-31 H3N2 (X31) and A/England/195/2009 H1N1 (Eng195), resulting in the complete inhibition of infection. Time of addition assays and FACS analysis were used to help determine the modes of action.

View Article and Find Full Text PDF

Bovine viral diarrhea virus (BVDV), a pestivirus in the family , is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections.

View Article and Find Full Text PDF

Bats are recognized as natural reservoirs for an array of diverse viruses, particularly coronaviruses, which have been linked to major human diseases like SARS-CoV and MERS-CoV. These viruses are believed to have originated in bats, highlighting their role in virus ecology and evolution. Our study focuses on the molecular characterization of bat-derived coronaviruses (CoVs) in Canada.

View Article and Find Full Text PDF

The Zika virus (ZIKV) epidemic elicited a rapid commitment to the development of animal models for ZIKV research. Non-human primates (NHPs) and mice have made significant contributions to this research, but NHPs are expensive, have a long gestation period, and are available only in small numbers; non-genetically modified mice are resistant to infection. To address these deficiencies, we have established the laboratory opossum, , as a small animal model that complements the mouse and monkey models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!