Signal transduction from the angiotensin II AT2 receptor.

Trends Endocrinol Metab

CNRS UPR415, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, 75014 Paris, France.

Published: April 2001

Recent studies of genetically engineered animals have established a role for the angiotensin II (AT2) receptor in cardiovascular, renal and central functions, as well as in developmental processes. This review summarizes new insights into major AT2 signaling pathways--activation of protein phosphatases, the nitric oxide-cGMP system and phospholipase A2--which have been related to specific cellular responses or functions of this receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1043-2760(99)00205-2DOI Listing

Publication Analysis

Top Keywords

angiotensin at2
8
at2 receptor
8
signal transduction
4
transduction angiotensin
4
receptor studies
4
studies genetically
4
genetically engineered
4
engineered animals
4
animals established
4
established role
4

Similar Publications

Hypertension: A Continuing Public Healthcare Issue.

Int J Mol Sci

December 2024

Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.

Hypertension is a cardiovascular disease defined by an elevated systemic blood pressure. This devastating disease afflicts 30-40% of the adult population worldwide. The disease burden for hypertension is great, and it greatly increases the risk of cardiovascular morbidity and mortality.

View Article and Find Full Text PDF

PGE and HCN2 ion channels are critical mediators of pain initiated by angiotensin II.

Brain Behav Immun

December 2024

Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK. Electronic address:

Angiotensin II is well known to have an important influence on blood pressure, mediated via the angiotensin II type 1 receptor (AT1R), but more recent studies have shown that angiotensin II may play an important additional role in eliciting pain via a distinct action at the angiotensin II type 2 receptor (AT2R). Signalling pathways that link activation of AT2R to a sensation of pain are, however, incompletely understood. Here we use rodent inflammatory pain models to confirm that selective activation of AT2R triggers aversive responses, and that these are abolished by either antagonism or genetic deletion of AT2R.

View Article and Find Full Text PDF

Background: In patients with diabetes mellitus (DM), vascular endothelial dysfunction (VED) is the main reason for impaired life expectancy. Melatonin (MEL) demonstrates wide-ranging effects across various organs and exhibits pleiotropic characteristics. The current study aims to investigate the modulatory roles of MEL vascular response to angiotensin II (Ang II) and its receptors including angiotensin type 1 receptor (AT-1 R) and angiotensin type 2 receptor (AT-2 R) in isolated thoracic aorta of non-diabetes (non-DM) and diabetes (DM) rats.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how intermittent fasting impacts age-related high blood pressure and the renal renin-angiotensin system in rats.
  • Older rats showed higher blood pressure and hormone levels associated with hypertension compared to younger rats, as well as lower levels of α-klotho and kidney receptor proteins.
  • Intermittent fasting, especially every other day fasting, effectively lowered blood pressure and improved certain RAS components in older rats, indicating its potential benefits for managing age-related hypertension.
View Article and Find Full Text PDF

NMDA receptors in the prefrontal cortex (PFC) play a crucial role in cognitive functions. Previous research has indicated that angiotensin II (Ang II) affects learning and memory. This study aimed to examine how Ang II impacts NMDA receptor activity in layer V pyramidal cells of the rat PFC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!