Biochemical and functional testing of a humanized monoclonal antibody directed against Respiratory Syncytial Virus (Synagis) has been performed to evaluate cell line stability, support process validation, and to demonstrate "comparability" during the course of process development. Using a variety of analytical methods, product manufactured at different sites and in bioreactors from 20 litres to 10,000 litres was shown to be biochemically and functionally equivalent. The biochemical testing for microheterogeneity found on Synagis included evaluation of changes in post-translational modifications such as deamidation, truncation, and carbohydrate structure. Studies were also performed to support cell line stability assessment and cell culture process validation. Cell culture conditions were deliberately varied in an attempt to determine if this would have an impact on the microheterogeneity of the product. In these studies Synagis was produced from cells cultured beyond the population doublings achieved at the maximum manufacturing scale, under conditions of low glucose, and using harvest times outside of the historical manufacturing operating range. Results showed that there was a different pattern of glycosylation during the early stages of bioreactor culture. No other changes in microheterogeneity were apparent for the other culture conditions studied. In summary, comparability assessment demonstrated that the Synagis manufacturing process is robust and consistent resulting in a predictable and reproducible monoclonal antibody product.

Download full-text PDF

Source
http://dx.doi.org/10.1006/biol.1999.0179DOI Listing

Publication Analysis

Top Keywords

monoclonal antibody
12
cell stability
12
process validation
12
testing humanized
8
humanized monoclonal
8
support cell
8
cell culture
8
culture conditions
8
synagis
5
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!