Magnetic Resonance Images (MRI) of the temporomandibular joint (TMJ) are usually performed to study the opening/closing movements of the mandible and have up to now been pseudodynamic step-by-step images simulating condylar motion by post-processing reconstruction. The aim of this study was: 1. to optimize a TMJ cine-imaging method to give a better clinical result than the step-by-step methods; 2. to develop an ultra-fast MRI Gradient Echo (GE) sequence for this purpose; and 3. to analyze condylar movements in the sagittal, coronal and para-axial planes during border mandibular displacements and chewing. Both TM joints were studied in six asymptomatic volunteers. The method involved a compromise between in-plane resolution, slice thickness, signal-to-noise ratio and time resolution. Routine clinical use was found to be a GE pulse sequence providing three images per second with an isometric voxel resolution of approximately two millimeters in ridge. This did not allow visualization of the disk. Using this sequence enabled real and simultaneous condylar displacement observation in the three planes of space and therefore contributed to a better functional diagnosis of pathologic TMJ motions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08869634.1999.11746103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!