Oculocutaneous albinism (OCA) is an inherited disorder resulting in hypopigmentation of the skin, hair, and eyes. OCA type 2 (tyrosinase-positive) is the most common recessively inherited disorder among southern African Blacks. OCA2 is also seen in southern African Caucasoids, but is less frequent. The gene responsible for this type of albinism, P, is the human homolog of the mouse pink-eyed dilution gene. Mutations at this locus are also responsible for the milder hypopigmentation phenotype seen in individuals with brown oculocutaneous albinism (BOCA). A common African P mutation was identified in Black OCA2 individuals, and has since been shown to occur in Black individuals with brown OCA as well. This mutation is a 2.7 kb interstitial deletion. In this study, we undertook to screen the coding region of the P gene for mutations in the non-2.7 kb deletion alleles of OCA2 patients who did not carry the deletion allele in either one or both of their P genes. We identified four mutations (A334V, 614delA, 683insG [corrected], 727insG) in a group of 39 unrelated Black OCA2 patients with a total of 52 non-2.7 kb deletion OCA2 genes. When taking all OCA2 cases into consideration, including those homozygous for the 2.7 kb deletion mutation, these account for a further 1.7% of OCA2 mutations in southern African Blacks, increasing the overall mutation detection rate to 78.7%. Three mutations (E678K, L688F, I370T) were identified in a group of 15 Black patients with an initially unclassified type of OCA and another three mutations (IVS 14-2 (a-->g), V350M, P743L) were identified in nine Caucasoid OCA patients. Relatively few mutations, all with low frequency, were identified in the non-2.7 kb deletion OCA genes. We propose that other mutations may lie either within intronic sequence or within the promoter region of the gene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1098-1004(200002)15:2<166::AID-HUMU5>3.0.CO;2-ZDOI Listing

Publication Analysis

Top Keywords

gene mutations
12
oculocutaneous albinism
12
southern african
12
non-27 deletion
12
mutations
9
inherited disorder
8
african blacks
8
individuals brown
8
black oca2
8
region gene
8

Similar Publications

Variations in the TP53 and KRAS genes indicate a particularly adverse prognosis in relapsed pediatric T-ALL. We hypothesized that these variations might be subclonally present at disease onset and contribute to relapse risk. To test this, we examined two cohorts of children diagnosed with T-ALL: one with 81 patients who relapsed and 79 matched non-relapsing controls, and another with 226 consecutive patients, 30 of whom relapsed.

View Article and Find Full Text PDF

Although recent evidence suggests that myeloid clonal hematopoiesis (M-CH) may influence lymphoma clinical outcome, its impact in mantle cell lymphoma (MCL) remains unclear. Here, we report a comprehensive NGS-based analysis of the M-CH mutational landscape at baseline and follow-up in patients enrolled in the Fondazione Italiana Linfomi (FIL) MCL0208 phase 3 trial (NCT02354313), evaluating lenalidomide maintenance versus observation after chemoimmunotherapy and autologous stem cell transplantation (ASCT) in untreated young MCL patients. Overall, 254/300 (85%) enrolled patients (median age 57 years [32-66]) had a baseline sample available for CH analysis.

View Article and Find Full Text PDF

Widespread anthelmintic resistance has complicated the management of parasitic nematodes. Resistance to the benzimidazole (BZ) drug class is nearly ubiquitous in many species and is associated with mutations in beta-tubulin genes. However, mutations in beta-tubulin alone do not fully explain all BZ resistance.

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!