van't Hoff-Le Bel Stranger: Formation of a Phosphonium Cation with a Planar Tetracoordinate Phosphorus Atom.

Angew Chem Int Ed Engl

Lehrstuhl für Anorganische Chemie I der Universität Fakultät für Chemie, Universitätsstrasse 150, D-44801 Bochum (Germany).

Published: December 1999

A novel intriguing type of coordination mode in phosphorus chemistry has been established that is of fundamental interest in the understanding of chemical bonding. Besides the synthesis of the first planar phosphonium cation PR(4)(+) 1 by a surprisingly simple metathesis reaction, a potentially general experimental method that reaches the seemingly impossible high-energy region of basic molecular and isoelectronic ER(4) systems (E=B(-), C, N(+), Al(-), Si, P(+)) is provided.

Download full-text PDF

Source

Publication Analysis

Top Keywords

phosphonium cation
8
van't hoff-le
4
hoff-le bel
4
bel stranger
4
stranger formation
4
formation phosphonium
4
cation planar
4
planar tetracoordinate
4
tetracoordinate phosphorus
4
phosphorus atom
4

Similar Publications

Free ions in organic solvents of low polarity would be valuable tools for the activation of low-reactivity substrates. However, the formation of unreactive ion pairs at concentrations relevant for synthesis has prevented the success of this concept so far. On the example of highly nucleophilic pyridinamide phosphonium salts in dichloromethane, we show that asymmetric aggregation offers a solution to this general problem.

View Article and Find Full Text PDF

Novel ionic liquid catalysts comprising terephthalate anions are capable of promoting the neutral hydrolysis of relatively large flake sizes of poly(ethylene terephthalate) at 0.5 mol% loading (200 °C, 4 h, 94% yield) without either attendant product inhibition or product contamination by protonated catalyst. Catalysts with large, lipophilic phosphonium cations outperform more polar variants.

View Article and Find Full Text PDF

Efficient and safe carriers of genetic material are crucial for advancing gene therapy. Three new series of cationic dendritic nanocarriers based on a carbosilane scaffold, differentiated by peripheral modifications: saccharide (CS-glyco), amine (CS-N), and phosphonium dendrimers (CS-P) were designed for binding, protecting, and releasing polyanionic compounds like therapeutic siRNA. Besides introducing synthetic methodology, this study brings a unique direct interstructural comparison of 16 dendritic nanovector's characteristics, addressing a gap in typical research that focuses on uniform structural types.

View Article and Find Full Text PDF

A Robust Dual-Layered Solid Electrolyte Interphase Enabled by Cation Specific Adsorption-Induced Built-In Electrostatic Field for Long-Cycling Solid-State Lithium Metal Batteries.

Angew Chem Int Ed Engl

January 2025

Beijing Institute of Technology, Advanced Research Institute of Multidisciplinary Science, 5 Zhongguancun South Street,, Beijing Institute of Technology, 100081, Beijing, CHINA.

Solid-state lithium (Li) metal batteries (SSLMBs) are considered as one of the most promising next-generation battery technologies due to their high energy density and intrinsic safety. However, interfacial issues such as side reactions and Li dendrite growth severely hinder the practical application of SSLMBs. In this contribution, we proposed a cationic built-in electrostatic field to drive the generation of an anion-derived dual-layered solid electrolyte interphase (SEI).

View Article and Find Full Text PDF

Novel peptides based on sea squirt as biocide enhancers to mitigate biocorrosion of EH36 steel.

Bioelectrochemistry

January 2025

Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Microbiologically influenced corrosion (MIC) affects offshore production activities severely. Although adding biocides is a simple method, it can cause environmental damage over time. Using green biocide enhancers is a viable strategy to reduce the amount of biocides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!