If cytokines are constitutively expressed by and act on neurons in normal adult brain, then we may have to modify our current view that they are predominantly inflammatory mediators. We critically reviewed the literature to determine whether we could find experimental basis for such a modification. We focused on two "proinflammatory" cytokines, interleukin (IL)-1 and tumor necrosis factor-alpha (TNFalpha) because they have been most thoroughly investigated in shaping our current thinking. Evidence, although equivocal, indicates that the genes coding for these cytokines and their accessory proteins are expressed by neurons, in addition to glial cells, in normal brain. Their expression is region- and cell type-specific. Furthermore, bioactive cytokines have been extracted from various regions of normal brain. The cytokines' receptors selectively are present on all neural cell types, rendering them responsive to cytokine signaling. Blocking their action modifies multiple neural "housekeeping" functions. For example, blocking IL-1 or TNFalpha by several independent means alters regulation of sleep. This indicates that these cytokines likely modulate in the brain behavior of a normal organism. In addition, these cytokines are likely involved in synaptic plasticity, neural transmission, and Ca2+ signaling. Thus, the evidence strongly suggests that these cytokines perform neural functions in normal brain. We therefore propose that they should be thought of as neuromodulators in addition to inflammatory mediators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1471-4159.2000.740457.x | DOI Listing |
J Biophotonics
January 2025
Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
Background: Plasma biomarkers demonstrated potential in identifying amyloid pathology in early Alzheimer's disease. Different subtypes of subjective cognitive decline (SCD) may lead to different cognitive impairment conversion risks.
Objective: To investigate the differences of plasma biomarkers in SCD subtypes individuals, which were unclear.
J Alzheimers Dis
January 2025
Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Urinary formic acid (FA) has been reported to be a biomarker for Alzheimer's disease (AD). However, the association between FA and pathological changes in memory clinic patients is currently unclear.
Objective: This study aims to investigate associations between FA and pathological changes across different cognitive statuses in memory clinic patients.
J Alzheimers Dis
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear.
Objective: This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults
Methods: We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden).
Eur J Case Rep Intern Med
December 2024
Internal Medicine, Holy Family Hospital, Rawalpindi, Pakistan.
Background: Andersen-Tawil syndrome (ATS) is a rare autosomal dominant disorder caused by variants in the gene. It is associated with periodic paralysis, dysmorphic features and cardiac arrhythmias. The syndrome exhibits incomplete penetrance, leading to a broad spectrum of clinical manifestations, making diagnosis challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!