Fluctuations of the thiol disulfide system were shown to be interrelated with changes in the ECG indices. Trimetazidine since it has antioxidant properties was found to be effective in patients with low thiol disulfide ratios. A single dose of 0.8 mg/kg of the body mass was shown to inhibit the appearance of stress-dependent ischemic symptoms during surgical procedures.

Download full-text PDF

Source

Publication Analysis

Top Keywords

thiol disulfide
8
[myocardial cytoprotection
4
cytoprotection trimetazidine
4
trimetazidine patients
4
patients ischemic
4
ischemic heart
4
heart disease
4
disease surgical
4
surgical stress]
4
stress] fluctuations
4

Similar Publications

GILT stabilizes cofilin to promote the metastasis of prostate cancer.

Cell Death Discov

January 2025

Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China.

Gamma-interferon-induced lysosomal thiol reductase (GILT), known for catalyzing disulfide bond reduction, is involved in various physiological processes. While the involvement of GILT in the development of various tumors has been demonstrated, the mechanisms underlying its regulation in prostate cancer (PCa) are not fully understood. In the present study, we confirmed that GILT was significantly upregulated in PCa and facilitated tumor metastasis.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs and is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach.

View Article and Find Full Text PDF

In the present investigation, redox-responsive-based dextran carriers were developed for the controlled release of hydrophobic molecules via a reducing agent naturally present in cells, namely glutathione. In this sense, dextran was modified with a thiol derivative. The roles of the hydrophilic segments in the molecular self-organisation of polysaccharide derivatives into nanoparticles were investigated by varying the average dextran molar mass.

View Article and Find Full Text PDF

Molecular basis for the enzymatic inactivity of class III glutaredoxin ROXY9 on standard glutathionylated substrates.

Nat Commun

January 2025

Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.

Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.

View Article and Find Full Text PDF

Disentangling activity-stability trade-off in the catalytic degradation of malodorous sulfur-containing VOCs driven by active sites' self-dynamic evolution.

J Hazard Mater

December 2024

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650050, PR China; Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Key Laboratory of Yunnan Province for Synthesizing Sulfur-containing Fine Chemicals, The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China. Electronic address:

The catalytic degradation of malodorous sulfur-containing volatile organic compounds (S-VOCs), especially methanethiol (CHSH), faces an enormous challenge in striking a balance between activity and stability. Herein, we develop the time-tandem and spatial-extended strategy for synthesizing t-MoO/meso-SiO nano-reactor-type catalysts and reveal the migration and transformation behaviors of both carbon and sulfur species at the mesoscopic scale to break the catalytic CHSH activity and stability trade-off. The dynamic evolution of active centers from initial oxygen sites and acid sites to sulfur vacancies in MoS during the reaction process as well as the formation of a new dimethyl disulfide (CHSSCH) reaction pathway are identified as the main reason for the catalysts' superior activity and sulfur resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!