Stress-induced alterations in peripheral benzodiazepine receptor (PBR) density have been reported in humans and in rats. However, the PBR response is highly specific, and its function remains largely unexplained. The aim of the present study was to investigate the relationship between behavior in the two-way active avoidance paradigm (2WAA) and post-test PBR densities in adrenal, testis, kidney, and cerebral cortex. Adult male Wistar rats were tested in the 2WAA either in the naive state (AA) or 24 h following shock preexposure (PE), known to interfere with avoidance/escape response acquisition, and decapitated immediately after testing. Control subjects were decapitated without experimental experience. The stressful characteristic of the experiment was validated by significantly increased post-test corticosterone levels in AA and PE subjects compared with controls, with a trend towards higher corticosterone levels in PE relative to AA rats. Similarly, PE compared with AA subjects tended to show retarded acquisition of the escape/avoidance response. PBR densities in adrenal, kidney, and testis and central benzodiazepine receptors (CBR) in the cerebral cortex remained unaffected by avoidance testing. Cerebral cortex PBR density was significantly increased in PE subjects. These findings suggest that avoidance testing, although stressful to the animals, led to changes confined to cerebral cortex PBR, indicating that the hypothalamic-pituitary-adrenal (HPA) response occurs independently of the PBR response in peripheral organs, and also suggest that the opportunity for coping alters the impact of the stressor on the subject and prevents the expression of PBR response in peripheral organs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(99)02160-5DOI Listing

Publication Analysis

Top Keywords

cerebral cortex
20
pbr response
12
peripheral benzodiazepine
8
benzodiazepine receptors
8
pbr
8
pbr density
8
pbr densities
8
densities adrenal
8
corticosterone levels
8
avoidance testing
8

Similar Publications

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear.

Objective: This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults

Methods: We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden).

View Article and Find Full Text PDF

Background And Purpose: Tinnitus is a condition in which individuals perceive sounds, such as ringing or buzzing, without any external source. Although the exact cause is not fully understood, recent studies have indicated the involvement of nonauditory brain structures, including the limbic system. We aimed to compare the volumes of specific brain structures between patients with tinnitus and controls.

View Article and Find Full Text PDF

Purpose: Due to the highly individualized clinical manifestation of Parkinson's disease (PD), personalized patient care may require domain-specific assessment of neurological disability. Evidence from magnetic resonance imaging (MRI) studies has proposed that heterogenous clinical manifestation corresponds to heterogeneous cortical disease burden, suggesting customized, high-resolution assessment of cortical pathology as a candidate biomarker for domain-specific assessment.

Method: Herein, we investigate the potential of the recently proposed Mosaic Approach (MAP), a normative framework for quantifying individual cortical disease burden with respect to a population-representative cohort, in predicting domain-specific clinical progression.

View Article and Find Full Text PDF

BACKGROUND Swallowing is a complex behavior involving the musculoskeletal system and higher-order brain functions. We investigated the effects of different modalities of repetitive transcranial magnetic stimulation (rTMS) on the unaffected hemisphere and observed correlation between suprahyoid muscle activity and cortical activation in unilateral stroke patients when swallowing saliva, based on functional near-infrared spectroscopy (fNIRS). MATERIAL AND METHODS From November 2022 to March 2023, twenty-five patients with unilateral stroke were screened using computed tomography or magnetic resonance imaging and identified via a video fluoroscopic swallow study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!