Obstructive sleep apnea (OSA) is a sleep-related breathing disorder that can cause left ventricular (LV) dysfunction. In patients with OSA, the LV dysfunction is usually evaluated by echocardiography. The purpose of this study was to evaluate whether the use of breathhold cine MRI for the study of LV dysfunction would be feasible and well tolerated by patients with OSA. Six volunteers and five patients underwent a breathhold cine MRI study of the LV using a 1.5 Tesla MR imager. Cine MRI was performed using a breathhold k-space segmented TurboFLASH technique during end-expiration. Systolic thickening of the LV septal wall was 49% +/- 16% in normals vs. 25% +/- 10.5% in patients (p < 0.05). Systolic thickening of the LV free wall was 42% +/- 12% in normals vs. 22% +/- 9% in patients (p < 0.05). There was a significant difference in end-diastolic wall thickness between the two groups. All patients tolerated the procedure well. The total duration of each study was relatively short (less than 11 min). Breathhold MRI techniques can be used to study LV dysfunction in patients with respiratory disability such as OSA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0730-725x(99)00111-3 | DOI Listing |
Med Phys
January 2025
National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Respiratory motion during radiotherapy (RT) may reduce the therapeutic effect and increase the dose received by organs at risk. This can be addressed by real-time tracking, where respiration motion prediction is currently required to compensate for system latency in RT systems. Notably, for the prediction of future images in image-guided adaptive RT systems, the use of deep learning has been considered.
View Article and Find Full Text PDFRadiographics
January 2025
From the Department of Radiology, Cardiovascular Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., P.A.A.); Department of Radiology, Division of Cardiothoracic Imaging, Jefferson University Hospitals, Philadelphia, Pa (B.S.); Department of Radiology, Baylor Health System, Dallas, Tex (P.R.); Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR (M.Y.N.); and Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, Ohio (M.A.B.).
Cardiac MRI (CMR) is an important imaging modality in the evaluation of cardiovascular diseases. CMR image acquisition is technically challenging, which in some circumstances is associated with artifacts, both general as well as sequence specific. Recognizing imaging artifacts, understanding their causes, and applying effective approaches for artifact mitigation are critical for successful CMR.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the Department of Magnetic Resonance Imaging, Radiology Imaging Center, Fuwai Hospital, National Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, China (Z.D., Y.T., G.Y., X.M., S.Y., J.W., X.X., K.Y., M.L., X.C., S.Z.); Clinical and Technical Support, Philips Healthcare, Beijing, China (P.S.); and Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China (K.Z., Y.Z.).
Purpose To explore the diffusion characteristics of hypertrophic cardiomyopathy (HCM) using in vivo cardiac diffusion-tensor imaging (cDTI) and to determine whether cDTI could help identify abnormal myocardium beyond cardiac MRI findings of fibrosis and hypertrophy. Materials and Methods In this prospective study conducted from April to August 2023, participants with HCM and healthy volunteers were enrolled for cardiac MRI evaluation, including cine, late gadolinium enhancement (LGE), T1 mapping, and cDT imaging, using a 3.0-T scanner.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the Department of Radiology, Narayana Institute of Cardiac Sciences, Bangalore 560099, India (S.G., V.R.); and Department of Radiology, Amrita Institute of Medical Sciences and Research Centre, Kochi, India (R.R.).
Radiol Cardiothorac Imaging
February 2025
From the Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin St, Smith Tower, Ste 1801, Houston, TX 77030 (M.M., P.B., V.C., M.S., M.R., S.F.N., W.A.Z., D.J.S.); and Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, Tex (D.T.N., E.A.G.).
Purpose To investigate the determinants and effect of right ventricular (RV) dysfunction in aortic regurgitation (AR) using cardiac MRI. Materials and Methods This study included patients with moderate or severe AR who were enrolled in the DEBAKEY-CMR registry between January 2009 and June 2020. Patients with previous valve intervention, cardiomyopathy deemed unrelated to AR, severe aortic stenosis, and other confounders were excluded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!