Phenotypically stable young adult bovine articular chondrocytes suspended in beads of alginate gel were first cultured for 5 days, using daily changes of medium containing 10% fetal bovine serum and supplements. The cells in the beads were then maintained in culture for a further 3 days in the presence or absence of interleukin-1alpha at 1 ng/ml in the daily change of medium. The exposure to interleukin-1alpha caused the incorporation of (35)S-sulfate into the predominant cartilage proteoglycan, aggrecan, to decrease by approximately 60%. In addition, proteoglycans that had accumulated into the cell-associated matrix during the first 5 days of culture in the absence of interleukin-1alpha moved into the matrix further removed from the cells and from there into the medium. In contrast, the exposure to interleukin-1alpha was found to markedly promote the rate of synthesis of hyaluronan, especially during the first 24 h. Over the 3 days of culture in the presence of interleukin-1alpha, a large proportion of the newly synthesized hyaluronan molecules, as well as those that had previously become residents of the cell-associated matrix, moved out of this compartment and appeared to become permanent residents of the further removed matrix. These results demonstrate that exposure of young adult articular chondrocytes to interleukin-1alpha has profound effects on the metabolism of hyaluronan, a molecule that plays a critical role in the retention of proteoglycan molecules in the matrix. Importantly, the results suggest that exposure of chondrocytes to interleukin-1 in inflamed joints, such as occurs in rheumatoid arthritis, leads to the rapid loss of coordination of the synthesis of aggrecan and hyaluronan, two of the critical constituents of the proteoglycan aggregate. In addition, we present evidence that these interleukin-1-induced effects differentially alter the metabolism of hyaluronan in the metabolically active cell-associated matrix and the metabolically inactive matrix further removed from the chondrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1006/abbi.1999.1626DOI Listing

Publication Analysis

Top Keywords

articular chondrocytes
12
cell-associated matrix
12
matrix
8
young adult
8
absence interleukin-1alpha
8
exposure interleukin-1alpha
8
days culture
8
matrix removed
8
metabolism hyaluronan
8
hyaluronan
6

Similar Publications

Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis.

Adv Sci (Weinh)

January 2025

Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.

Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.

View Article and Find Full Text PDF

Background: Polydatin (PD), also known as tiger cane glycoside, is a natural compound extracted from the Japanese knotweed plant, which is often referred to as white resveratrol. It exhibits anti-inflammatory, antioxidant, and anti-apoptotic effects in the treatment of various diseases. However, the potential molecular mechanisms of PD in osteoarthritis have not been clearly elucidated.

View Article and Find Full Text PDF

High paracrine activity of hADSCs cartilage microtissues inhibits extracellular matrix degradation and promotes cartilage regeneration.

Mater Today Bio

February 2025

Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China.

Due to its unique structure, articular cartilage has limited self-repair capacity. Microtissues are tiny tissue clusters that can mimic the function of target organs or tissues. Using cells alone for microtissue construction often results in the formation of necrotic cores.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is one of the most common bone disorders and has a serious impact on the quality of life of patients. LncRNA-HCP5 (HCP5) is downregulated in OA tissues. However, the latent function and regulatory mechanisms of HCP5 in OA are unclear.

View Article and Find Full Text PDF

Transcriptomic Analysis and Experimental Verification of Ferroptosis Signature Genes in Osteoarthritis.

Int J Rheum Dis

January 2025

Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Minda Hospital of Hubei Minzu University, Enshi, China.

Osteoarthritis is a systemic disease that primarily damages articular cartilage and also affects the synovium, ligaments, and bone tissues. The key mechanisms involved are chondrocyte death and degradation of the extracellular matrix. This study aims to identify differentially expressed genes (DEGs) associated with ferroptosis and investigate their roles in the development of osteoarthritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!