While significant progress has been made in understanding the cellular defect and molecular basis of polycythaemia vera (PV), elucidation of the primary mutation leading to PV remains elusive. While clinically useful, the PV diagnostic criteria put forward by the Polycythemia Vera Study Group are not based on the pathophysiology of this disorder and in some instances may lead to false diagnosis or may not be sufficient to diagnose an early PV. In diagnostically unclear situations, clinical and laboratory findings must take into account the acquired nature of PV, its clonality, and the presence of endogenous erythroid colony formation in serum-containing media. It is likely that other simpler assays may be developed based on the rapidly emerging knowledge of the cellular pathology of PV. Several intriguing observations of abnormalities pertaining to the erythroid signal transduction have been recently reported; these remain to be validated in other laboratories and to be proven specific for PV. The clinical concept of primary thrombocythaemia (PT) lags behind what we know about PV. While the diagnosis of PT is still based on the exclusion of other known causes of thrombocytosis, new knowledge is emerging. Recent clonality studies of a large number of PT females show that the majority are clonal. It is our belief that thrombocythaemic subjects who are not found to be clonal are those with secondary thrombocytosis. Multiple in vitro-based assays of megakaryocytic and erythroid progenitors have been developed and conflicting data published. It is likely that standardized assays of megakaryocytic progenitors will soon become available and a reproducible PT specific defect will be found. Such a specific test would be of immense diagnostic value in this most elusive of all myeloproliferative disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0950-3536(98)80040-1 | DOI Listing |
Cell Syst
January 2025
Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA. Electronic address:
The mitogen-activated protein kinase (MAPK) pathway integrates growth factor signaling through extracellular signal-regulated kinase (ERK) to control cell proliferation. To study ERK dynamics, many researchers use an ERK activity kinase translocation reporter (KTR). Our study reveals that this ERK KTR also partially senses cyclin-dependent kinase 2 (CDK2) activity, making it appear as if ERK activity rises as cells progress through the cell cycle.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, China. Electronic address:
Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to water resources and ecosystems. The wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) is a dominant predator typically inhabiting rice fields or wet habitats near water sources. However, little is known about the effects of TCC on the wolf spiders.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:
Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).
View Article and Find Full Text PDFAnalyst
January 2025
Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba.
Keyhole limpet haemocyanins (KLH1 and KLH2) from , are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!