The distribution of serotonin-, tyrosine hydroxylase-, and FMRFamide-immunoreactive neuronal elements, as well as the concentrations of serotonin and dopamine in the different parts of the gastrointestinal tract, were studied in the snail Helix pomatia. The sensitivity of the spontaneous contractions of the alimentary tract to serotonin, dopamine, and FMRFamide was also tested. Serotonin-, tyrosine hydroxylase-, and FMRFamide-immunoreactive elements could be demonstrated in each part of the gastrointestinal tract, but they showed different innervation patterns. Serotonin- and tyrosine hydroxylase-immunoreactive elements were dominant in the submucosal layer, whereas FMRFamide-immunoreactive elements were dominant in both the mucosal and submucosal layers. Tyrosine hydroxylase-immunoreactive elements were confined to the longitudinal muscle trabeculae of submucosa, whereas serotonin-immunoreactive elements were distributed throughout the submucosal layer. No serotonin-immunoreactive cell bodies, but only fibers, could be detected in the gastrointestinal tract, and therefore they represent extrinsic elements. Tyrosine hydroxylase- and FMRFamide-immunoreactive cell bodies represent intrinsic elements of the tract. The occurrence and density of the serotonin- and tyrosine hydroxylase-immunoreactive elements showed significant differences in the different parts of the alimentary tract, in accordance with HPLC assays, which revealed a significant frontocaudal decrease in both the serotonin (from 2.11 to 1.21 pM/mg) and dopamine (from 3.28 to 0.52 pM/mg) contents of the different parts of the alimentary tract. Dopamine at 10(-5) M concentration proved to be effective only on the longitudinal muscles by increasing the tone and frequency of contractions, but was ineffective on the circular muscles. Serotonin affected both the longitudinal and circular muscles. Serotonin at 10(-5) M concentration decreased the tone and increased the frequency of low-amplitude contractions of the longitudinal muscles of the esophagus and the gizzard but increased both the tone and frequency of the crop. Serotonin at 10(-9) M concentration slightly decreased the tone and blocked the contractions of the circular muscles in the crop but at 10(-5) M concentration induced contractions of the circular muscles in the gizzard. FMRFamide at 10(-6) M concentration decreased the tone and was shown to block the contractions of both the longitudinal and circular muscles.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1006955018882DOI Listing

Publication Analysis

Top Keywords

circular muscles
20
gastrointestinal tract
16
serotonin- tyrosine
16
tyrosine hydroxylase-
12
hydroxylase- fmrfamide-immunoreactive
12
alimentary tract
12
tyrosine hydroxylase-immunoreactive
12
hydroxylase-immunoreactive elements
12
10-5 concentration
12
concentration decreased
12

Similar Publications

Hsa_circ_0001304 promotes vascular neointimal hyperplasia accompanied by autophagy activation.

Commun Biol

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.

Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.

View Article and Find Full Text PDF

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

(1) Background: Animal growth is a complex process, involving the coordination of a wide variety of genes, non-coding RNAs, and pathways. Circular RNAs (circRNAs) belong to a novel class of functional non-coding RNAs (ncRNAs). They have a distinctive ring structure and are involved in various biological processes, including the proliferation, differentiation, and apoptosis of muscle cells.

View Article and Find Full Text PDF

Transcriptomics reveals the regulatory mechanisms of circRNA in the muscle tissue of cows with ketosis postpartum.

Genomics

January 2025

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Electronic address:

The transition period from late pregnancy to early lactation in dairy cows involves significant metabolic changes to cope with the challenges related to energy metabolism. Muscle tissue, as the largest energy-metabolizing tissue in dairy cows, plays a crucial role in energy metabolism. Furthermore, circular RNAs (circRNAs) have been shown to play key roles in various biological events.

View Article and Find Full Text PDF

Introduction And Hypothesis: The urethra is surrounded by layers of smooth muscle, including inner longitudinal and outer circler muscles, as well as the skeletal muscle of the external urethral sphincter. However, the extent of these muscles and their relationship with the levator ani (LA) remain unclear. This study aimed to clarify the composition of muscle layers around the female urethra and their three-dimensional arrangements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!