Somatic stem cells are largely quiescent in spite of their considerable proliferative potential. Transforming growth factor-(beta)1 (TGF-(beta)1) appears to be a good candidate for controlling this quiescence. Indeed, various mutations in the TGF-beta signalling pathway are responsible for neoplasic proliferation of primitive stem/progenitor cells in human tissues of various origins. In hemopoietic single cell culture assays, blocking autocrine and endogeneous TGF-(beta)1 triggers the cell cycling of high proliferative potential undifferenciated stem/progenitor cells. However, it has never been demonstrated whether TGF-(beta)1 has an apoptotic effect or a differentiating effect on these primitive cells, as already described for more mature cells. Using single cell experiments both in liquid or semi-solid culture assays and dye tracking experiments by flow cytometry, we demonstrate that low, physiological concentrations of TGF-(beta)1, which specifically maintain primitive human hemopoietic stem/progenitor cells in quiescence, have a reversible effect and do not induce apoptosis. We moreover demonstrate that these low concentrations prevent the rapid loss of the mucin-like protein CD34, a most common marker of immature hematopoietic stem/progenitor cells, which is progressively lost during differentiation. TGF-(beta)1 not only up-modulated the CD34 antigen before S phase entry but also maintained a high level of CD34 expression on cells which had escaped cell cycle inhibition, suggesting that proliferation inhibition and differentiation control by TGF-(beta)1 may be independent. These data provide additional evidence that TGF-(beta)1 acts as a key physiological factor ensuring the maintenance of a stem cell reserve.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.113.3.383DOI Listing

Publication Analysis

Top Keywords

stem/progenitor cells
16
tgf-beta1
8
cell cycle
8
cd34 antigen
8
cells
8
proliferative potential
8
single cell
8
culture assays
8
demonstrate low
8
cell
6

Similar Publications

Interferon types-I/II (IFN-αβ/γ) secretions are well-established antiviral host defenses. The human immunodeficiency virus (HIV) particles are known to prevail following targeted cellular interferon secretion. CD4 T-lymphocytes are the primary receptor targets for HIV entry, but the virus has been observed to hide (be latent) successfully in these cells through an alternate entry route via interactions with LFA1.

View Article and Find Full Text PDF

The advent of bioprinting has enabled the creation of precise three-dimensional (3D) cell cultures suitable for biomimetic in vitro models. In this study, we developed a novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) combined with tendon stem/progenitor cells (hTSPCs) derived from human tendon explants. Although pure ColMa has not previously been proposed as a printable hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting this material.

View Article and Find Full Text PDF

Endometriosis is an estrogen-dependent benign disease characterized by growth of the endometrial tissue outside the uterine wall. Several reports suggest the possibility of the pathogenesis and recurrence of endometriosis being related to functions of stem/progenitor cells of the endometrium. The drawback of the widely used method of using Hoechst 33342, a fluorescent dye, to collect stem cell-like populations, is the requirement of an ultraviolet (UV) excitation source not commonly provided on standard flow cytometers.

View Article and Find Full Text PDF

Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) isolated from tissues such as bone marrow, cord, cord blood, etc., are frequently used as feeder layers to expand hematopoietic stem/ progenitor cells (HSCs/HSPCs) in vitro. They are also co-infused with the HSCs to improve the efficacy of transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!