The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors.

Pharmacol Biochem Behav

Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, USA.

Published: January 2000

Stimulus control was established in rats trained to discriminate either 5-methoxy-N,N-dimethyltryptamine (3 mg/kg) or (-)-2,5-dimethoxy-4-methylamphetamine (0.56 mg/kg) from saline. Tests of antagonism of stimulus control were conducted using the 5-HT1A antagonists (+/-)-pindolol and WAY-100635, and the 5-HT2 receptor antagonist pirenperone. In rats trained with 5-MeO-DMT, pindolol and WAY-100635 both produced a significant degree of antagonism of stimulus control, but pirenperone was much less effective. Likewise, the full generalization of 5-MeO-DMT to the selective 5-HT1A agonist [+/-]-8-hydroxy-dipropylaminotetralin was blocked by WAY-100635, but unaffected by pirenperone. In contrast, the partial generalization of 5-MeO-DMT to the 5-HT2 agonist DOM was completely antagonized by pirenperone, but was unaffected by WAY-100635. Similarly, in rats trained with (-)-DOM, pirenperone completely blocked stimulus control, but WAY-100635 was inactive. The results obtained in rats trained with (-)-DOM and tested with 5-MeO-DMT were more complex. Although the intraperitoneal route had been used for both training drugs, a significant degree of generalization of (-)-DOM to 5-MeO-DMT was seen only when the latter drug was administered subcutaneously. Furthermore, when the previously effective dose of pirenperone was given in combination with 5-MeO-DMT (s.c.), complete suppression of responding resulted. However, the combination of pirenperone and WAY-100635 given prior to 5-MeO-DMT restored responding in (-)-DOM-trained rats, and provided evidence of antagonism of the partial substitution of 5-MeO-DMT for (-)-DOM. The present data indicate that 5-MeO-DMT-induced stimulus control is mediated primarily by interactions with 5-HT1A receptors. In addition, however, the present findings suggest that 5-MeO-DMT induces a compound stimulus that includes an element mediated by interactions with a 5-HT2 receptors. The latter component is not essential for 5-MeO-DMT-induced stimulus control, but is revealed in animals tested or trained with a 5-HT2-selective agonist such as (-)-DOM. Based upon the present data, we conclude that 5-MeO-DMT differs from DOM with respect to the serotonergic element that mediates stimulus control in the rat, but that it shares with DOM a functionally significant interaction with 5-HT2 receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0091-3057(99)00178-1DOI Listing

Publication Analysis

Top Keywords

stimulus control
32
rats trained
16
5-meo-dmt
10
stimulus
9
control
8
5-ht1a receptors
8
antagonism stimulus
8
generalization 5-meo-dmt
8
trained --dom
8
5-meo-dmt-induced stimulus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!