The authors describe a methodological approach to emission spectral analysis of material evidences aimed at evaluating the regularities of deposition of the shot metals at the site of injuries inflicted by gas guns. Injuries inflicted by gunshots with chemical cartridges and with shot cartridges, with and without obstructions, from different distances have been examined. The detected regularities may be useful in forensic medical expert evaluations by means of emission spectral analysis in cases with gas gunshots.
Download full-text PDF |
Source |
---|
Water Res
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Dissolved organic matter (DOM) represents one of the most active elements in aquatic systems, whose fraction is engaged in chemical and biological reactions. However, fluorescence, molecular diversity and variations of DOM in groundwater systems with the alteration of surface water recharge remain unclear. Herein, Excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with principal component coefficients, parallel factor analyses (PARAFAC) with two‒dimensional correlation spectroscopy (2D-COS) were applied in this study.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Monolayer transition metal dichalcogenides are promising materials that not only are atomically thin but also have direct bandgaps, making them highly regarded in optics and optoelectronics. However, their photoluminescence exhibits almost random polarization at room temperature. The emission is also omnidirectional and weak due to the low quantum yield.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
University of Dayton Research Institute, Dayton, Ohio 45469, USA.
A method to determine electron temperature within a plasma by the spectral analysis of atomic tungsten emission has been explored. The technique was applied to a post-discharge region immediately following a high voltage nanosecond pulsed discharge in air with tungsten electrodes. Atomic tungsten lines are readily observed in the weak emission spectrum within the post-discharge region for many microseconds.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, USA. Electronic address:
Tire tread particles are microplastics (< 5 mm) and leach organic chemicals into aquatic environments. It is important to understand the behavior of tire wear compounds in sunlight-exposed waters in terms of their persistence, removal, and transformation. Therefore, we conducted photolysis experiments with leachates from laboratory-generated tire tread particles (TTP) over 72 h in a solar simulator to evaluate the behavior of leached compounds and fluorescent components over time.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
Hand and Upper Extremity Division of Plastic and Reconstructive Surgery, University of California Davis, Sacramento, CA.
Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!