Studies in various tissues, including the kidney, have demonstrated that toxins elicit apoptosis under certain conditions and necrosis under others. The nature of the response has important consequences for the injured tissue in that necrotic cells elicit inflammatory responses, whereas apoptotic cells do not. Thus, there has been considerable interest in defining the mode of cell death elicited by known cytotoxins. The present studies examined the response of renal epithelial cells to oxalate, a metabolite excreted by the kidney that produces oxidant stress and death of renal cells at pathophysiological concentrations. These studies employed LLC-PK1 cells, a renal epithelial cell line from pig kidney and NRK-52E (NRK) cells, a line from normal rat kidney, and compared the effects of oxalate with those of known apoptotic agents. Changes in cellular and nuclear morphology, in nuclear size, in ceramide production, and in DNA integrity were assessed. The ability of bcl-2, an anti-apoptotic gene product, to attenuate oxalate toxicity was also assessed. These studies indicated that oxalate-induced death of renal epithelial cells exhibits several features characteristic of apoptotic cell death, including increased production of ceramide, increased abundance of apoptotic bodies, and marked sensitivity to the level of expression of the anti-apoptotic gene bcl-2. Oxalate-induced cell death also exhibits several characteristics of necrotic cell death in that the majority of the cells exhibited cellular and nuclear swelling after oxalate treatment and showed little evidence of DNA cleavage by TUNEL assay. These results suggest that toxic concentrations of oxalate trigger both forms of cell death in renal epithelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1006/taap.1999.8835DOI Listing

Publication Analysis

Top Keywords

renal epithelial
20
cell death
20
epithelial cells
16
death renal
12
cells
10
oxalate toxicity
8
cellular nuclear
8
anti-apoptotic gene
8
death
7
oxalate
6

Similar Publications

Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.

View Article and Find Full Text PDF

LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice.

J Transl Med

January 2025

Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Background: The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally.

View Article and Find Full Text PDF

High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux.

Hum Cell

January 2025

Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.

Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.

View Article and Find Full Text PDF

Spatial transcriptomics has emerged as a powerful tool for discerning the heterogeneity of the tumour microenvironment across various cancers, including renal cell carcinoma (RCC). Spatial transcriptomics-based studies conducted in clear-cell RCC (the only RCC subtype studied using this technique to date) have given insights into spatial interactions within this disease. These insights include the role of epithelial-to-mesenchymal transitioning, revealing proximity-dependent interactions between tumour cells, fibroblasts, interleukin-2-expressing macrophages and hyalinized regions.

View Article and Find Full Text PDF

An antagonistic role of clock genes and lima1 in kidney regeneration.

Commun Biol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.

The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!