In fibroblasts, the G protein alpha subunits Galpha(12) and Galpha(13) stimulate Rho-dependent stress fiber formation and focal adhesion assembly, whereas G protein betagamma subunits instead exert a disruptive influence. We show here that the latter can, however, stimulate the formation of stress fibers and focal adhesions in epithelial-like HeLa cells. Transient expression of beta(1) with gamma(2), gamma(5), gamma(7), and gamma(12) in quiescent HeLa cells induced stress fiber formation and focal adhesion assembly as did expression of the constitutively active Galpha(12). Co-expression of betagamma with Galpha(i2) and the C-terminal fragment of the beta-adrenergic receptor kinase, both of which are known to bind and sequester free betagamma, blocked betagamma-induced stress fiber and focal adhesion formation. Inhibition was also noted with co-expression of a dominant negative mutant of Rho. Botulinum C3 exoenzyme, which ADP-ribosylates and inactivates Rho, and a Rho-associated protein kinase inhibitor, Y-27632, similarly inhibited betagamma-induced stress fiber and focal adhesion assembly. These results indicate that G protein betagamma subunits regulate Rho-dependent actin polymerization in HeLa cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.275.3.2098 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!