The possible protective effect of a suberin extract from Quercus suber cork on acridine orange (AO)-, ofloxacin- and UV radiation-induced mutagenicity (bleaching activity) in Euglena gracilis was examined. To our knowledge, the present results are the first attempt to analyse suberin in relation to mutagenicity of some chemicals. Suberin exhibits a significant dose-dependent protective effect against AO-induced mutagenicity and the concentration of 500 micrograms/ml completely eliminates the Euglena-bleaching activity of AO. The mutagenicity of ofloxacin is also significantly reduced in the presence of suberin (125, 250 and 500 micrograms/ml). However, the moderate protective effect of suberin on UV radiation-induced mutagenicity was observed only at concentrations 500 and 1000 micrograms/ml. Our data shows that suberin extract from Q. suber cork possess antimutagenic properties and can be included in the group of natural antimutagens acting in a desmutagenic manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1383-5718(99)00190-4 | DOI Listing |
Microbiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Materials (Basel)
November 2024
Institute of Wood Science and Furniture, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland.
This manuscript explores the development of sustainable biopolymer composites using suberin extraction waste, specifically suberinic acid residues (SAR), as a 10% (/) reinforcing additive in polylactide (PLA) and thermoplastic starch-polylactide blends (M30). The materials were subjected to a detailed analysis using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) to assess their thermal, mechanical, and structural properties. The study confirmed the amorphous nature of the biopolymers and highlighted how SAR significantly influences their degradation behavior and thermal stability.
View Article and Find Full Text PDFACS Omega
October 2024
Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia.
Suberin, a common biomass processing waste, is a complex biopolymer and a promising source for the biorefinery of chemicals. Six different approaches for the extraction of birch outer bark suberin fatty acids (SFAs) were explored, and their application in grafting the surface of cellulose nanocrystals (CNCs) was investigated. Successful CNC functionalization was controlled with FTIR and NMR analyses.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 159, 02-776 Warsaw, Poland.
Finishing coatings in the wood-based composites industry not only influence the final appearance of the product but also serve to protect against fungi and molds and reduce the release of harmful substances, particularly formaldehyde and volatile organic compounds (VOCs). Carbon-rich materials, such as those derived from birch bark extraction, specifically suberin acids, can fulfill this role. Previous research has demonstrated that adding suberin acid residues (SAR) at 20% and 50% by weight significantly enhances the gas barrier properties of surface-finishing materials based on poly(lactide) (PLA) and polycaprolactone (PCL), particularly in terms of total VOC (TVOC) and formaldehyde emissions.
View Article and Find Full Text PDFCarbohydr Polym
August 2024
Fibre and Particle Engineering Research Unit, University of Oulu, Oulu 90570, Finland. Electronic address:
Here, biogenic and multifunctional active food coatings and packaging with UV shielding and antimicrobial properties were structured from the aqueous dispersion of an industrial byproduct, suberin, which was stabilized with amphiphilic cellulose nanofibers (CNF). The dual-functioning CNF, synthesized in a deep eutectic solvent, functioned as an efficient suberin dispersant and reinforcing agent in the packaging design. The nanofibrillar percolation network of CNF provided a steric hindrance against the coalescence of the suberin particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!