Calcification limits the long-term durability of xenograft glutaraldehyde-crosslinked heart valves. In this study, epoxy-crosslinked porcine aortic valve tissue was evaluated after subcutaneous implantation in weanling rats. Non-crosslinked valves and valves crosslinked with glutaraldehyde or carbodiimide functioned as control. Epoxy-crosslinked valves had somewhat lower shrinkage temperatures than the crosslinked controls, and within the series also some macroscopic and microscopic differences were obvious. After 8 weeks implantation, cusps from non-crosslinked valves were not retrieved. The matching walls were more degraded than the epoxy- and control-crosslinked walls. This was observed from the higher cellular ingrowth with fibroblasts, macrophages, and giant cells. Furthermore, non-crosslinked walls showed highest numbers of lymphocytes, which were most obvious in the capsules. Epoxy- and control-crosslinked cusps and walls induced lower reactions. Calcification, measured by von Kossa-staining and by Ca-analysis, was always observed. Crosslinked cusps calcified more than walls. Of all wall samples, the non-crosslinked walls showed the highest calcification. It is concluded that epoxy-crosslinked valve tissue induced a foreign body and calcification reaction similar to the two crosslinked controls. Therefore, epoxy-crosslinking does not represent a solution for the calcification problem of heart valve bioprostheses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(sici)1097-4636(2000)53:1<18::aid-jbm3>3.0.co;2-j | DOI Listing |
J Biomed Mater Res
June 2001
University of Groningen, Medical Biology, Tissue Engineering, University Hospital, Entrance 25, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
Calcification limits the long-term durability of xenograft glutaraldehyde (GA)-crosslinked heart valves. Previously, a study in rats showed that epoxy-crosslinked heart valves reduced lymphocyte reactions to the same extent as the GA-crosslinked control and induced a similar foreign-body response and calcification reaction. The present study was aimed at reducing the occurrence of calcification of epoxy-crosslinked tissue.
View Article and Find Full Text PDFJ Biomed Mater Res
August 2000
University of Groningen, Faculty for Medical Sciences, Medical Biology; Cell Biology and Biomaterials, Bloemsingel 10-B2, 9712 KZ Groningen, The Netherlands.
Calcification limits the long-term durability of xenograft glutaraldehyde-crosslinked heart valves. In this study, epoxy-crosslinked porcine aortic valve tissue was evaluated after subcutaneous implantation in weanling rats. Non-crosslinked valves and valves crosslinked with glutaraldehyde or carbodiimide functioned as control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!