Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recognizing the role of the extracellular calcium-sensing receptor (CaR) in mineral metabolism greatly improves our understanding of calcium homeostasis. The biology of the low affinity, G-protein-coupled CaR and the effects of its activation in various tissues are reviewed. Physiological roles include regulation of parathyroid hormone (PTH) secretion by small changes in ionized calcium (Ca2+) and control of urinary calcium excretion with small changes in blood Ca2+. The CaR also affects the renal handling of sodium, magnesium and water. Mutations affecting the CaR that make it either less or more sensitive to Ca2+ cause various clinical disorders; heterozygotes of mutations causing the CaR to be less sensitive to extracellular Ca2+ cause familial hypocalciuric hypercalcemia, while the homozygous form results in severe infantile hyperparathyroidism. Mutations causing increased sensitivity of the CaR to extracellular Ca2+ produce hereditary forms of hypoparathyroidism. Disorders, such as primary and secondary hyperparathyroidism, may exhibit acquired abnormalities of the CaR. Calcimimetic drugs, which amplify the sensitivity of the CaR to Ca2+, can suppress PTH levels, leading to a fall in blood Ca2+. Experiences with this agent in patients with secondary and primary hyperparathyroidism and parathyroid carcinoma are summarized. In animals and humans with hyperparathyroidism, this agent produces a dose-dependent fall in PTH and blood Ca2+, with larger doses causing more sustained effects. The treatment has been short-term except for one patient followed for more than 600 days for parathyroid carcinoma; nonetheless the drug did not cause major side-effects and appears to be safe. Further long-term controlled studies are needed with calcimimetic agents of this type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1523-1755.1999.07303.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!