These studies sought to investigate quantitative relationships between the complex composite structure and mechanical properties of tendon. The isolated mouse tail tendon fascicle was chosen as an appropriate model for these so-called "structure-function" investigations. Specifically, collagen fibril diameters and mechanical properties were measured in fascicles from immature (3 week) control, adult (8 week) control, and adult (8 week) MovI3 transgenic mice. Results demonstrated a moderate correlation between mean fibril diameter and fascicle stiffness (r = 0.73, p = 0.001) and maximum load (r = 0.75, p < 0.001), whereas a weak correlation with fascicle modulus (r = 0.39, p = 0.11) and maximum stress (r = 0.48, p = 0.04). An analysis of pooled within-group correlations revealed no strong structure-function trends evidenced at the local or group level, indicating that correlations observed in the general structure-function analyses were due primarily to having three different experimental groups, rather than significant correlations of parameters within the groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.2800859 | DOI Listing |
J Mech Behav Biomed Mater
December 2024
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
The human patellar tendon contains distinct fascicle bundles across its mediolateral and anteroposterior regions. Studies have suggested region-specific behaviour during in vivo actions, but it is unclear whether such regional differences result from localized variation in composition and mechanical properties within the tendon itself. Furthermore, the viscoelastic properties of any region of the human patellar tendon have not been well described previously.
View Article and Find Full Text PDFTransl Sports Med
December 2024
Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital Bispebjerg-Frederiksberg, Copenhagen, Denmark.
Persisting deficits are often seen years after an Achilles tendon rupture despite dedicated rehabilitation efforts. A possible reason for reduced function is elongation of the tendon and accompanying shortening of the muscle. Strength training with focus on the eccentric component of loading leads to longer muscle fascicles in healthy persons.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki-shi 842-0015, Saga, Japan.
: the purpose of this study was to determine the contributions of mechanical, neural, morphological, and muscle quality factors on individual differences in the maximal ankle dorsiflexion range of motion (ROM). : A sample of 41 university students performed passive-dorsiflexion and morphological measurements. In the passive-dorsiflexion measurement, while the ankle was passively dorsiflexed, maximal dorsiflexion ROM was measured in addition to passive torque at a given angle and muscle-tendon junction (MTJ) displacement during the last 13° as mechanical factors, and stretch tolerance and muscle activation were measured as neural factors.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Traumatology, Orthopaedics and Hand Surgery, Poznan University of Medical Sciences, 61-545 Poznań, Poland.
Damage to the upper trunk of the brachial plexus, often caused by high-energy trauma, leads to significant functional impairment of the upper limb. This injury primarily affects the C5 and C6 roots, resulting in paralysis of muscles critical for shoulder and elbow function. If spontaneous nerve regeneration does not occur within 3-6 months post-injury, surgical intervention, including nerve transfers, is recommended to restore function.
View Article and Find Full Text PDFPhysiol Rep
December 2024
Department of Sport and Health Sciences, Biomechanics in Sports, Technical University of Munich, Munich, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!