Phosphoinositide 3'-kinases constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. Phosphoinositide 3'-kinases that bind to the platelet-derived growth factor receptor are composed of two subunits: the p85 subunit acts as an adapter and couples the catalytic p110 subunit to the activated receptor. There are different isoforms of p85 as well as of p110, the individual roles of which have been elusive. Using microinjection of inhibitory antibodies specific for either p110(alpha) or p110(beta) we have investigated the involvement of the two p110 isoforms in platelet-derived growth factor- and insulin-induced actin reorganization in porcine aortic endothelial cells. We have found that antibodies against p110(alpha), but not antibodies against p110(beta), inhibit platelet-derived growth factor-stimulated actin reorganization, whereas the reverse is true for inhibition of insulin-induced actin reorganization. These data indicate that the two phosphoinositide 3'-kinase isoforms have distinct roles in signal transduction pathways induced by platelet-derived growth factor and insulin.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.113.2.207DOI Listing

Publication Analysis

Top Keywords

platelet-derived growth
16
actin reorganization
12
p110alpha p110beta
8
phosphoinositide 3'-kinases
8
signal transduction
8
growth factor
8
insulin-induced actin
8
3-kinase isoforms
4
isoforms p110alpha
4
p110beta differential
4

Similar Publications

Hepatocellular carcinoma (HCC) is the most common and lethal type of primary liver cancer, frequently arising from chronic liver injury and inflammation. Despite treatment advancements, HCC prognosis remains poor, emphasizing the need for effective preventive and therapeutic strategies. This study investigates the hepatoprotective and anti-tumor effects of Hongjam, a steamed freeze-dried silkworm powder, in a diethylnitrosamine (DEN) and thioacetamide (TAA)-induced HCC mouse model.

View Article and Find Full Text PDF

Blood-derived biomaterials with high platelet content have recently emerged as attractive products for tissue engineering and regenerative medicine (TERM). Platelet-derived bioactive molecules have been shown to play a role in wound healing and tissue regeneration processes by promoting collagen synthesis, angiogenesis, cell proliferation, migration, and differentiation. Given their regenerative potential, platelet-rich blood derivatives have become a promising treatment option for use in a variety of conditions.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden.

Background: Blood-brain barrier (BBB) integrity is crucial for brain homeostasis and maintenance. This is a pilot study to investigate cerebrospinal fluid (CSF) levels of several proteins implicated in BBB integrity, such as aquaporin-4 (AQP4), platelet-derived growth factor (PDGFRβ), human major facilitator superfamily domain containing protein 2A (MFSD2A), matrix metalloproteinase (MMP)-9, Matrix metalloproteinase (MMP)-2, and Fibrinogen, for assessing BBB integrity.

Method: CSF samples were collected from 100 participants (36 [36%] female and 64 males [64%]; mean [SD] age, 73,34 [9,05] years).

View Article and Find Full Text PDF

Although therapies based on direct-acting antivirals (DAAs) effectively eradicate hepatitis C virus (HCV) in patients, there is still a high risk of liver fibrosis even after a sustained virological response. Therefore, it is of great clinical importance to understand the mechanism of potential factors that promote liver fibrosis after virological cure by treatment with DAAs. Here, we found that tubulointerstitial nephritis antigen-like 1 (TINAGL1) is significantly increased in HCV-infected hepatocytes and in the liver of patients with liver fibrosis, and that higher TINAGL1 expression persists in HCV-eradicated hepatocytes after treatment with DAAs.

View Article and Find Full Text PDF

Endothelial-secreted Endocan activates PDGFRA and regulates vascularity and spatial phenotype in glioblastoma.

Nat Commun

January 2025

The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Extensive neovascularization is a hallmark of glioblastoma (GBM). In addition to supplying oxygen and nutrients, vascular endothelial cells provide trophic support to GBM cells via paracrine signaling. Here we report that Endocan (ESM1), an endothelial-secreted proteoglycan, confers enhanced proliferative, migratory, and angiogenic properties to GBM cells and regulates their spatial identity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!