The aim of this study was to develop a structure-property model for membrane partitioning of oligopeptides using statistical design methods and multivariate data analysis. A set of 20 tetrapeptides with optional N-methylations at residues 2 and 4 was designed by a D-optimal design procedure. After synthesis and purification, the membrane partitioning abilities of the peptides were tested in two chromatographic systems with phospholipids as the stationary phase: immobilized artificial membrane chromatography (IAM) and immobilized liposome chromatography (ILC). The relationship between these measures and three different sets of calculated descriptors was analyzed by partial least-squares projection to latent structures (PLS). The descriptors used were the molecular surface area, Molsurf parameters, and Volsurf parameters. All three models were of good statistical quality and supported that a large hydrogen-bonding potential and the presence of a negative charge impair membrane partitioning, whereas hydrophobic parameters promote partitioning. The findings are in accordance with what has been found for absorption of known drugs and have implications for the design of peptide-like drugs with good oral bioavailability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm9910932 | DOI Listing |
J Membr Biol
January 2025
School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.
Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.
Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Anesthesiology and Intensive Care Medicine CCM/CVK Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany.
Treatment with veno-venous extracorporeal membrane oxygenation (VV ECMO) has become a frequently considered rescue therapy in patients with severe acute respiratory distress syndrome (ARDS). Hemolysis is a common complication in patients treated with ECMO. Currently, it is unclear whether increased ECMO blood flow (Q̇) contributes to mortality and might be associated with increased hemolysis.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
Despite the significant benefits of aquatic passive sampling (low detection limits and time-weighted average concentrations), the use of passive samplers is impeded by uncertainties, particularly concerning the accuracy of sampling rates. This study employed a systematic evaluation approach based on the combination of meta-analysis and quantitative structure-property relationships (QSPR) models to address these issues. A comprehensive meta-analysis based on extensive data from 298 studies on the Polar Organic Chemical Integrative Sampler (POCIS) identified essential configuration parameters, including the receiving phase (type, mass) and the diffusion-limiting membrane (type, thickness, pore size), as key factors influencing uptake kinetic parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!