We have examined the in-vitro permeability characteristics of insulin in the presence of various absorption enhancers across rat intestinal membranes and have assessed the intestinal toxicity of the enhancers using an in-vitro Ussing chamber method. The absorption enhancing mechanism of n-lauryl-beta-D-maltopyranoside was studied also. The permeability of insulin across the intestinal membranes was low in the absence of absorption enhancers. However, the permeability was improved in the presence of enhancers such as sodium glycocholate and sodium deoxycholate in the jejunum, and sodium glycocholate, sodium deoxycholate, n-lauryl-beta-D-maltopyranoside, sodium caprate and ethylenediaminetetraacetic acid (EDTA) in the colon. Overall, the absorption enhancing effects were greater on the colonic membrane than on the jejunal membrane. The intestinal membrane toxicity of these enhancers was characterized using the release of cytosolic lactate dehydrogenase from the colonic membrane. A marked increase in the release of lactate dehydrogenase was observed in the presence of sodium deoxycholate and EDTA. The release of lactate dehydrogenase in the presence of these absorption enhancers was similar to that seen with sodium dodecyl sulphate (SDS), used as a positive control, indicating high toxicity of these enhancers to the intestinal membrane. In contrast, sodium glycocholate and sodium caprate caused minor releases of lactate dehydrogenase, similar to control levels, suggesting low toxicity. In addition, the amount of lactate dehydrogenase in the presence of n-lauryl-beta-D-maltopyranoside was much less than that seen with sodium deoxycholate, EDTA and SDS. Therefore, sodium glycocholate, sodium caprate and n-lauryl-beta-D-maltopyranoside are useful absorption enhancers due to their high absorption enhancing effects and low intestinal toxicity. To investigate the absorption enhancing mechanisms of n-lauryl-beta-D-maltopyranoside, the transepithelial electrical resistance (TEER), voltage clamp experiments and the circular dichroism spectra were studied. n-Lauryl-beta-D-maltopyranoside decreased the TEER values in a dose-dependent manner, suggesting that the enhancer may open the tight junctions of the epithelium, thereby increasing the permeability of insulin via a paracellular pathway. This speculation was supported by the findings that 20 mM n-lauryl-beta-D-maltopyranoside produced a greater increase in the paracellular flux rate than in the transcellular flux rate by the voltage clamp studies. Evaluating the circular dichroism spectra we found that insulin oligomers were not dissociated to monomers by the addition of n-lauryl-beta-D-maltopyranoside, but dissociation did occur with the addition of sodium glycocholate. Thus, the dissociation of insulin was not a major factor in the absorption enhancing effect of n-lauryl-beta-D-maltopyranoside. These findings provide basic information to select the optimal enhancer for the intestinal delivery of peptide and protein drugs including insulin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1211/0022357991776976 | DOI Listing |
Sci Rep
January 2025
Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, 34220, İstanbul, Türkiye.
In the present study, dispersive solid phase extraction - hydride generation integrated with micro-sampling gas-liquid separator - flame atomic absorption spectrometry was proposed to determine lead in lake water samples taken in the Horseshoe Island, Antarctica. In scope of this study, microwave assisted NiFeO nanoparticles were synthesized, and the characterization of nanoparticles were carried out by FT-IR, XRD and SEM. All influential parameters of dispersive solid phase extraction and hydride generation were optimized to enhance signal intensity belonging to the analyte.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India. Electronic address:
Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China. Electronic address:
Triblock Pluronics of polyoxyethylene (PEO) and polyoxypropylene (PPO) are identified as competent suppressors for copper (Cu) electroplating in advanced electronics manufacturing. However, the specific interfacial roles of PEO and PPO blocks in Pluronic suppressors, are not yet fully understood, which is crucial for the rational design of effective suppressors. Herein, the influences of composition and block arrangement of such Pluronics on the inhibition against Cu plating are systematically investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!