Using the method of limits and a magnitude estimation procedure, the sense of touch was examined at multiple sites on the anterior torso of normal subjects. Their performance was compared with the performance of individuals having experienced a functionally complete spinal cord transection more than 6 months prior to the tests. Near the insentient regions of the spinal cord-injured patients there was a zone wherein the threshold for light touch was elevated and variable. Within this same transition zone, estimates of the magnitude of a brushing stimulus increased as a linear function of distance from the border for approximately 12 cm away from insentient skin. Throughout the rest of the thorax, spinal cord-injured patients displayed touch thresholds 67% higher than normals and, at the same test sites, spinal cord-injured patients offered estimates of the intensity of the brushing stimulus that averaged 62% higher than normal subjects. The greater intensity of the sensations experienced by spinal cord-injured patients with even very weak stimuli and the smaller range within which they were able to scale stimulus intensity, produced a situation wherein the patients made frequent errors of judgement even on skin regions far from the body parts affected by the lesion. These observations support the hypothesis that spinal cord lesions interrupt tonic modulatory mechanisms having global influences on the sense of touch. This loss produces an elevation of the touch threshold and a reduction of the normal dynamic range of tactile sensory perception for all skin surfaces on the anterior torso.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08990229970447 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!